Abstract:
Eco-friendly systems, methods and processes/processing (EFSMP) or an integrated Matrix encompasses stand-alone and/or interconnected modules for completely self-sustained, closed-loop, emission-free processing of mutiple source feedstock that can include pretreatment, with poisoning materials isolated during pretreatment being further recycled to provide useful materials such as, for example, separated metals, carbon and fullerenes for production of nano materials, sulfur, water, sulfuric acid, gas, heat and carbon dioxide for energy production, and production of refined petroleum, at a highly-reduced cost over the best state-of-the-art refining methods/systems that meets new emissions standards as well as optimizes production output with new ultra-speed cycle times. By-products from the petroleum refining process which were previously discarded also now are recycled as renewable sources of energy (water, waste oil and rubber/coal derived pyrolyic (pyro lysis) oil, carbon gases and process gases), or recyclable resources, such as metals and precious metals, oxides, minerals, etc., can be obtained.
Abstract:
The present invention relates to a reactor for a transport limited reaction comprising an inlet zone comprising particles of a material catalytically active in said reaction and a main zone comprising particles of a material catalytically active in said reaction characterized by the external geometric surface area of the particles of said main zone being lower than the external geometric surface area of the particles of said inlet zone.
Abstract:
There is proposed a process for the production of methanol from a feed stream rich in carbon dioxide, in which a feed stream rich in carbon dioxide is supplied to a methanation stage and is converted there with hydrogen to a stream rich in methane. Along with a feed stream rich in hydrocarbons, the same subsequently is converted to synthesis gas in a reforming stage, which synthesis gas subsequently is converted to the end product methanol. Advantageously, an existing prereforming stage is used as methanation stage.
Abstract:
Method for the productioii of ammorsia, and optionally urea, from a flue gas effluent from an oxygen-fired, process, wherein the production of ammonia and optionally urea includes a net power production. Also provided is a method to effect cooling in an oxygen- fired process with air separation unit exit gases utilizing either closed or open cooling loop cycles.
Abstract:
A pulse jet system and method is disclosed. In an example, the pulse jet system includes a combustion chamber, intake ports to deliver combustion agents to the combustion chamber, an expansion chamber to cool a combustion product following combustion of the combustion agents in the combustion chamber, and an exhaust to exit the cooled gas from the expansion chamber. In another example, the pulse jet system includes a combustion chamber with intake ports to deliver combustion agents to the combustion chamber, wherein the combustion chamber is part of a four cycle engine. The pulse jet system also includes an expansion chamber to cool a combustion product following combustion of the combustion agents in the combustion chamber.
Abstract:
This invention relates to the integration of an ammonia production process with a fermentation process to produce products such as alcohols and/or acids in addition to ammonia. In a specific embodiment, a natural gas stream comprising methane is passed to a reforming zone to produce a substrate comprising CO and H2. The substrate is next passed to a bioreactor containing a culture of one or more microorganisms and fermenting the culture to produce one or more fermentation products comprising alcohols and/or acids and an exhaust stream comprising CO2, and H2. The exhaust stream can then be passed to a separation zone to remove at least a portion of the CO2 and produce a purified exhaust stream comprising H2 which is then passed to an ammonia production zone and is used to produce ammonia.