Abstract:
A process for the production of formaldehyde-stabilised urea is described comprising the steps of: (a) generating a synthesis gas comprising hydrogen, nitrogen, carbon monoxide, carbon dioxide and steam in a synthesis gas generation unit; (b) recovering carbon dioxide from the synthesis gas to form a carbon dioxide-depleted synthesis gas; (c) synthesising methanol from the carbon dioxide-depleted synthesis gas in a methanol synthesis unit and recovering the methanol and a methanol synthesis off-gas comprising nitrogen, hydrogen and residual carbon monoxide; (d) subjecting at least a portion of the recovered methanol to oxidation with air in a formaldehyde production unit; (e) subjecting the methanol synthesis off- gas to methanation in a methanation reactor containing a methanation catalyst to form an ammonia synthesis gas; (f) synthesising ammonia from the ammonia synthesis gas in an ammonia production unit and recovering the ammonia; (g) reacting a portion of the ammonia and at least a portion of the recovered carbon dioxide stream in a urea production unit to form a urea stream; and (h) stabilising the urea by mixing the urea stream and a stabiliser prepared using formaldehyde recovered from the formaldehyde production unit, wherein a source of air is compressed and divided into first and second portions, the first portion is provided to the formaldehyde production unit for the oxidation of methanol and the second portion is further compressed and provided to the synthesis gas generation unit.
Abstract:
Eco-friendly systems, methods and processes/processing (EFSMP) or an integrated Matrix encompasses stand-alone and/or interconnected modules for completely self-sustained, closed-loop, emission-free processing of mutiple source feedstock that can include pretreatment, with poisoning materials isolated during pretreatment being further recycled to provide useful materials such as, for example, separated metals, carbon and fullerenes for production of nano materials, sulfur, water, sulfuric acid, gas, heat and carbon dioxide for energy production, and production of refined petroleum, at a highly-reduced cost over the best state-of-the-art refining methods/systems that meets new emissions standards as well as optimizes production output with new ultra-speed cycle times. By-products from the petroleum refining process which were previously discarded also now are recycled as renewable sources of energy (water, waste oil and rubber/coal derived pyrolyic (pyro lysis) oil, carbon gases and process gases), or recyclable resources, such as metals and precious metals, oxides, minerals, etc., can be obtained.
Abstract:
Systems and methods for producing synthetic gas are provided. The method can include gasifying a carbonaceous feedstock in the presence of an oxidant within a gasifier to provide a raw syngas. The raw syngas can be cooled within a cooler to provide a cooled syngas. The cooled syngas can be processed within a purification system to provide a treated syngas. The purification system can include a saturator adapted to increase a moisture content of the cooled syngas. The treated syngas and a first heat transfer medium can be introduced to a methanator to provide a synthetic gas, a second heat transfer medium, and a methanation condensate. At least a portion of the methanation condensate can be recycled from the methanator to the saturator.
Abstract:
Hydrogen generation assemblies and their components are disclosed. In some embodiments, the assemblies may include a pump controller configured to select a flowrate from a plurality of flowrates based on detected pressure, and to operate the pump at the selected flowrate. In some embodiments, the assemblies may include a purge valve assembly configured to allow at least one pressurized gas to flow through a purge conduit from a pressurized gas assembly to a fuel processing assembly when power to the fuel processing assembly is interrupted. In some embodiments, the assemblies may include a damper controller configured to move a damper between fully open and closed positions based, at least in part, on detected temperature in a hydrogen-producing region. In some embodiments, the assemblies may include a reformer controller configured to operate a fuel processing assembly between run and standby modes based, at least in part, on detected pressure.
Abstract:
A method for increasing the capacity of an ammonia plant, the plant comprising a front-end for production of a make-up syngas and a synthesis section for conversion of said make-up syngas into ammonia, the front-end comprising a primary reformer (1), a secondary reformer (2), an air compressor, a treatment section including a CO 2 removal section (4), and a syngas compressor (33), the method comprising the following steps: an increase of the hydrogen that is or can be produced by the reforming section of the front-end, by means of replacement of tubes of the primary reformer and/or feeding additional oxygen to the secondary reformer; revamping of said air compressor by means of installation of new statoric and rotoric parts in such a way that the revamped compressor train is able to deliver a larger flow rate of air to the secondary reformer while keeping the same final discharge pressure; revamping of the CO 2 removal section; revamping of the synthesis gas compressor; upgrade of the synthesis gas drying unit; revamping of the ammonia synthesis loop..
Abstract:
A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.
Abstract:
Method for the productioii of ammorsia, and optionally urea, from a flue gas effluent from an oxygen-fired, process, wherein the production of ammonia and optionally urea includes a net power production. Also provided is a method to effect cooling in an oxygen- fired process with air separation unit exit gases utilizing either closed or open cooling loop cycles.
Abstract:
Processes and systems for forming ethanol from methanol. The process involves carbonylating the methanol to form acetic acid and hydrogenating the acetic acid to form ethanol. In a first aspect, at least some hydrogen for the hydrogenating step is derived from a tail gas stream formed in the carbonylation step. In a second aspect, at least some carbon monoxide for the carbonylation step is derived from a vapor stream in the hydrogenation system. In a third aspect, a syngas stream is separated to form a hydrogen stream and a carbon monoxide stream, and the hydrogen stream is methanated to remove residual carbon monoxide prior to being introduced into the hydrogenation system.
Abstract:
Disclosed is a process for the production of ammonia comprising a step wherein synthesis gas is formed by catalytic partial oxidation. Also disclosed is a process of producing urea, wherein ammonia is formed in a process involving a step of catalytic partial oxidation, and carbon dioxide formed in the same process is reacted with said ammonia so as to form urea.