Abstract:
An apparatus, method, and computer readable media for requesting and sending block acknowledgement requests (BARs) and block acknowledgments (BAs) is disclosed. A method for BARs is disclosed. The method may include transmitting data frames to two or more wireless communication devices in accordance with a multi-user multiple-input and multiple-output (MU-MIMO). The method may include transmitting block acknowledgement requests (BARs) for the transmitted data frames to the two or more wireless communication devices in accordance with MU-MIMO. The method may include receiving block acknowledges (BA) of the data frames from the two or more wireless communication devices in accordance with MU-MIMO. A method for BAs is disclosed. The method may include receiving data frames from a second wireless communication device. The method may include receiving a block acknowledgement request from the second wireless communication device The method may include sending a block acknowledgement to the second wireless communication device using MU-MIMO.
Abstract:
An integrated WLAN/WWAN architecture is described, in which signaling used to control the integration of the WLAN/WWAN architecture is performed over the Radio Resource Control ("RRC") plane. The integrated architecture may provide a network-controlled framework for performing traffic steering and radio resource management. Additionally, according to the disclosure provided herein, the integrated architecture may interwork with legacy systems (e.g., architectures that do not support the integrated WLAN/WWAN architecture).
Abstract:
An integrated WLAN/WWAN Radio Access Technology (RAT) architecture is described in which signaling used to control the integration of the WLAN/WWAN architecture is performed over the Radio Resource Control (RRC) plane. The integrated architecture may provide a network-controlled framework for performing traffic steering and radio resource management.
Abstract:
A system and method for distributed scheduling of transmissions between device-to-device (D2D) communications is disclosed. The distributed scheduling method employs a distributed scheduling structure in which device identifiers rather than connection identifiers are used to enable scheduling of a D2D data transfer between devices in a wireless neighborhood. The novel distributed scheduling structure is scalable to a larger number of D2D devices than is feasible with a connection ID-based tone matrix.
Abstract:
Technology for selecting physical resource blocks (PRB) for cell-specific reference signal (CRS) transmission for a new carrier type (NCT) is disclosed. In an example, device operable in an evolved Node B (eNB) to select physical resource blocks (PRB) for cell-specific reference signal (CRS) transmission for a new carrier type (NCT) can include computer circuitry configured to: Determine a frequency bandwidth for the NCT; and select a CRS pattern of PRBs for a transmission of the CRS in the frequency bandwidth, wherein the frequency bandwidth includes PRBs with CRS and PRBs without CRS.
Abstract:
A remote radio unit (RRU) in a radio base station system can include a cyclic prefix (CP) module having a CP adder for downlink channel processing includes a CP remover for uplink channel processing. The RRU can be configured to communicate with a base band unit (BBU) via a physical communication link and communicate with a wireless mobile device via an air interface. The BBU can be configured for media access control (MAC) layer processing.
Abstract:
An apparatus and method for the flexible configuration of uplink and downlink ratio by exchanging information relating to user traffic pattern among eNodeBs in a wireless communications network using the X2 interface is disclosed herein. In one embodiment, the information exchanged among the eNodeBs comprises downlink subframe transmission power information and uplink subframe reception power information. In another embodiment, the information exchanged among the eNodeBs comprises downlink subframe loading information and uplink subframe loading information. The exchange of such information facilitates implementation of a flexible or dynamic configuration of the uplink and downlink ratio.
Abstract:
Embodiments of a system and method for managing feedback in a MU-MIMO system. An access point can announce one or more of mobile stations that are to receive downlink information in a first frame. The access point can also send a sounding package to the one or more mobile stations and receive feedback from the one or more mobile stations according to the feedback schedule. The feedback may be based on the reception of the sounding package.
Abstract:
In some embodiments a beamforming method is disclosed. The method can include transmitting a beam having a channel defined by a maximum ration transmission vector (MRT) and receiving a first response from a receiver, where the first response has first information such as parameters related to the transmitted beam. Using the parameters and the initial MRT another directional transmission can be made. A similar process can determine a maximum combining ratio for a receiver. Set up communications between the transmitter and the receiver can be reduced by omitting data from transmission that can be acquired by other means such as from memory or calculations. Additional embodiments are also disclosed.
Abstract:
In a wireless communication network, specific portions of the communication may combine directional transmission with omnidirectional reception. In particular, sector- level directional transmission may be established through sector sweeps, followed by antenna training for more directionality. In some embodiments, collisions during the exchange may be reduced by having different network devices use different sub-channels or different time slots. In some embodiments, each network may restrict its network communications to a single sub-channel that is different than the sub-channels used by adjacent networks.