Abstract:
This invention provides methods, NMR probes, and NMR systems for the analysis of the contents of sealed food and beverage containers and the like.
Abstract:
An NMR system comprises an NMR probe comprising multiple NMR detection sites. Each of the multiple NMR detection sites comprises a sample holding void and an associated NMR microcoil. The NMR system further comprises a controllable fluid router operative to direct fluid sample to the multiple NMR detection sites.
Abstract:
The invention relates to a coil configuration for Nuclear Magnetic Resonance (NMR) imaging, comprising a pair of coils (10B, 11B) driven by currents of opposite direction and a further coil (12B) lying in a plane of essentially zero magnetic flux. In a particular embodiment, the pair of coils has a crossed ellips geometry. The use of multiple coils can increase the signal to noise ratio compared to a larger coil that has the same field of view.
Abstract:
A Nuclear Magnetic Resonance (NMR) probe device (20) is disclosed. NMR prove device (20) includes a plurality of detection coils (30, 40) each operable to detect a signal from a corresponding one of a plurality of samples (34, 44) undergoing NMR analysis. Also included is a plurality of tuning circuits (31, 41, 38, 48) each coupled to one of detection coils (30, 40) to tune the one of the detection coils (30, 40) to a corresponding resonant frequency for the NMR analysis of the corresponding one of the samples. An electromagnetic shield (22) is positioned between a first one of the detection coils (30, 40) and a second one of the detection coils (30, 40) to isolate the first one of the detection coils (30, 40) and the second one of the detection coils (30, 40) from each other.
Abstract:
A Nuclear Magnetic Resonance (NMR) probe device (20) is disclosed. NMR prove device (20) includes a plurality of detection coils (30, 40) each operable to detect a signal from a corresponding one of a plurality of samples (34, 44) undergoing NMR analysis. Also included is a plurality of tuning circuits (31, 41, 38, 48) each coupled to one of detection coils (30, 40) to tune the one of the detection coils (30, 40) to a corresponding resonant frequency for the NMR analysis of the corresponding one of the samples. An electromagnetic shield (22) is positioned between a first one of the detection coils (30, 40) and a second one of the detection coils (30, 40) to isolate the first one of the detection coils (30, 40) and the second one of the detection coils (30, 40) from each other.
Abstract:
A coil assembly for use in MRI imaging includes a harness (26) having a base (28). First and second arm members (30a) extend from a first side of the base and above and over the base and third and fourth arm members (30b) extend from a second side of the base and above and over the base. A first cross member (34a) extends between the first arm member and the second arm member and a second cross member (34b) extends between the third arm member and the fourth arm member. An end of the first arm member is aligned with and detachably connected to an end of the third arm member and an end of the second arm member is aligned with and detachably connected to an end of the fourth arm member. First and second coil members each extend along the harness. The first coil member may be a saddle coil and the second coil member may be a solenoid coil configured to establish a quadrature arrangement.
Abstract:
An NMR system for measuring hydrogen loading status in a hydrogen reactor includes a reaction chamber having an interior reaction area. The system further includes a helical coil disposed around the interior reaction area. The helical coil is capable of generating an RF pulse and detecting free induction decay (FID) signals. The system further includes a magnet disposed around the helical coil. The magnet creates a uniform magnetic field substantially perpendicular to the RF pulse generated by the helical coil.
Abstract:
Nuclear magnetic resonance (NMR) logging tools may be configured for situation-dependent NMR logging operations by including two dissimilar coils that may function in four different modes of operation based on logging conditions including: a resistivity of the fluid, a diameter of the wellbore, a depth into the subterranean formation of the volume of investigation, or a combination thereof. For example, an NMR logging tool with a z-coil and a transversal coil may be useful in generating in a volume of investigation of a subterranean formation either (1) a transversal radiofrequency (RF) excitation with the transversal coil or (2) a quadrature RF excitation with both the z-coil and the transversal coil, where the choice of transversal or quadrature RF excitation is based on the logging conditions; and detecting an NMR signal from the subterranean formation with one of: (1) the transversal coil or (2) both the z-coil and the transversal coil.
Abstract:
Example devices and methods of MRI scanning are disclosed herein. In an example, an MRI scanning system may include a structure defining a bore within which a subject is to be positioned for scanning. The system may also include a magnet to generate a primary magnetic field within the bore parallel to a longitudinal axis of the bore, and a helical-antenna radio-frequency (RF) coil oriented along the longitudinal axis to surround the subject. In addition, the system may include an RF signal generator to drive the helical-antenna RF coil to generate a circularly polarized (CP) RF magnetic field perpendicular to the longitudinal axis, as well as an RF detector to detect a response signal generated by tissues of the subject in response to the CP RF magnetic field. Also included may be a computing system to create an image of the tissues of the subject based on the detected response signal.
Abstract:
Beschrieben und dargestellt ist ein kernmagnetisches Durchflussmessgerät (1) zur Bestimmung des Durchflusses eines durch ein Messrohr (2) strömenden Mediums mit einer Magnetfelderzeugungseinrichtung (4), einer Messeinrichtung (5) und einer Antenneneinrichtung (6) mit einer Antenne (7), wobei die Magnetfelderzeugungseinrichtung (4) über eine parallel zur Messrohrlängsachse (8) ausgerichtete Magnetfeldstrecke (9) das strömende Medium (3) mit einem zumindest eine zur Messrohrlängsachse (8) senkrechte Komponente aufweisenden Magnetfeld zur Magnetisierung des Mediums (3) durchsetzt, wobei die Messeinrichtung (5) zur Erzeugung von das magnetisierte Medium (3) anregenden Anregungssignalen und zur Messung der von den Anregungssignalen im magnetisierten Medium (3) hervorgerufenen Messsignale ausgebildet ist und wobei die Antenne (7) spulenartig ausgebildet ist und über eine parallel zur Messrohrlängsachse (8) ausgerichtete und in der Magnetfeldstrecke (9) liegende Messstrecke (10) zur Übertragung der Anregungssignale auf das magnetisierte Medium (3) und zur Detektion der Messsignale ausgebildet ist. Erfindungsgemäß ist ein kernmagnetisches Durchflussmessgerät (1) angegeben, das eine verbesserte Zuverlässigkeit aufweist, und zwar dadurch, dass die Antenneneinrichtung (6) mindestens eine weitere Antenne (11, 12) aufweist, dass die weitere Antenne (11, 12) spulenartig ausgebildet ist und über eine weitere parallel zur Messrohrlängsachse (8) ausgerichtete und in der Magnetfeldstrecke (9) liegende Messstrecke (13, 14) zur Übertragung der Anregungssignale auf das magnetisierte Medium (3) und zur Detektion der Messsignale ausgebildet ist und dass die Messstrecke (10) und die weitere Messstrecke (13, 14) verschieden sind.