Abstract:
A touch-sensitive depressible button with multiple depression thresholds is provided. When the button is depressed to a first depression threshold, the touch sensor can be switched from a low-power, non-sensing state to a sensing state. When the button is depressed to a second depression threshold, the touch sensor can sense the touch context and input can be generated based on the depression and the touch context. In this way, the touch-sensitive depressible button with multiple depression thresholds can facilitate timely switching of the touch sensor to a sensing state.
Abstract:
Aspects of the present invention include a device comprising a memory storing instructions and a processing circuit executing the instructions to detect a first user action. The instructions may further include instructions to establish a first user action state based on the detected first user action, designate a first mode based on the first user action state, determine if a second user action, consistent with a first detection condition associated with the first mode, has taken place, when the second user action has taken place, establish a second user action state based on the second user action, and designate a second mode based on the second user action state, the second mode consuming more power than the first mode.
Abstract:
An interactive input system comprises an interactive surface; at least one proximity sensor in proximity with the interactive surface and generating output signifying user proximity to the interactive surface; and processing structure configured to process user input generated in response to user interaction with said interaction input system and output from the at least one proximity sensor, said processing structure controlling interactive input system operation based upon at least one of said user input and proximity sensor output.
Abstract:
An electronic device (10) includes a touch-sensitive display screen (12) including an array of electromagnetic radiation detectors (D). The array of electromagnetic radiation detectors (D) is configured to generate an image signal that represents an image of a user input object (22) that is closely spaced to the display, and to generate a touch signal in response to the display screen (12) being touched by the user input object (22). The electronic device further includes a controller circuit (232) that is configured to display a plurality of keys (300) forming a keyboard and to display characters on the keys. The controller identifies from the image signal a size ( r ) and/or an angular orientation ( θ) of the user input object relative to the display screen. The controller identifies a user's selection among characters indicated on the keyboard keys in response to the identified size and/or the angular orientation of the user input object and in response to the touch signal, and outputs character data corresponding to the identified user selected character.
Abstract:
While taking X-Y coordinate measurements to determine the location of a point of contact on a touch screen, a controller circuit drives the touch screen with a selectable voltage. Voltages output from the touch screen are converted by an ADC into the X-coordinate and Y-coordinate values. The ADC has a convertible input voltage range. If only a low touch screen detection resolution is required, then the voltage with which the touch screen is driven is made to be substantially less than the convertible input voltage range. Only a portion of the convertible input range is usable, but this is adequate for the application and power consumption is reduced. If a higher touch screen detection resolution is required, then the touch screen is driven with a higher voltage. Power consumption is increased, but more or all of the convertible input voltage range of the ADC is then usable.
Abstract:
Provided are a touch sensor device and a method of switching an operation mode in the touch sensor. The touch sensor device includes a touch panel for receiving an input signal generated by a touch on a surface of the touch panel and generating a touch signal on the basis of a change in internal capacitance; and a touch sensor chip for receiving the touch signal, calculating touch information, generating sense data, comparing the sense data with previously stored pattern signals, and controlling the touch sensor device to perform an operation corresponding to the received input signal.