Abstract:
An optical sensor module for an optical pointing device and a method of fabricating the same are provided. The optical sensor includes: a lead frame having a light receiving hole formed in a pad; an image sensor attached to the pad and detecting light emitted from a light source through the light receiving hole; and a molding member for integrally molding the lead frame and the image sensor. The method includes: forming a light receiving hole in a pad of a lead frame; attaching an image sensor to the pad; connecting the image sensor to a lead of the lead frame by bonding using a wire; molding the lead frame and the image sensor; and trimming the lead of the lead frame to a certain length and forming the lead.
Abstract:
Provided are a touch sensor device and a method of switching an operation mode in the touch sensor. The touch sensor device includes a touch panel for receiving an input signal generated by a touch on a surface of the touch panel and generating a touch signal on the basis of a change in internal capacitance; and a touch sensor chip for receiving the touch signal, calculating touch information, generating sense data, comparing the sense data with previously stored pattern signals, and controlling the touch sensor device to perform an operation corresponding to the received input signal.
Abstract:
A time-to-digital converting circuit and a pressure sensing device using the same are provided. The circuit includes: a delay time-varying unit generating a reference signal having a fixed delay time, and a sensing signal having a variable delay time in response to an impedance of an externally applied signal; and a delay time calculation and data generation unit calculating a delay time difference between the reference signal and the sensing signal, and generating digital data having a value corresponding to the calculated delay time difference. Accordingly, the digital data are generated using the delay time varied in response to the externally applied signal, so that the size of the time-to-digital circuit is significantly reduced. In addition, an affect due to external noises is minimized.
Abstract:
Provided are a touch sensor and a method of operating the same. The touch sensor includes: a pulse signal generator for generating a pulse signal of which pulse width is calibrated in response to a control code; a pulse signal transmitter for transmitting the pulse signal when a touch object is out of contact with a touch pad and stopping transmitting the pulse signal when the touch object is in contact with the touch pad; a pulse signal detector for detecting the pulse signal transmitted through the pulse signal transmitter; and a controller recognizing a non-contact state and adjusting the control code to calibrate the pulse width of the pulse signal when the pulse signal detector detects the pulse signal. In the above-described configuration, the contact of the touch object with the touch pad can be sensed more precisely, and the occurrence of a malfunction in the touch sensor due to changed operating conditions can be prevented. As a result, the operating reliability of the touch sensor can be enhanced.
Abstract:
Provided are a semiconductor device and a touch sensor device. The semiconductor device includes a die including a sense signal generator for sensing a touch signal to generate a sense signal; a conductive die-attach pad attached to the die to generate the touch signal; and a package for packaging the die and the die-attach pad, wherein the die-attach pad generates the touch signal depending on whether a touch object comes into contact with the package. The touch sensor device includes a plurality of semiconductor devices connected in a daisy-chain communication mode, wherein each of the semiconductor devices includes a die including a sense signal generator for sensing a touch signal to generate a sense signal; a conductive die-attach pad attached to the die to generate the touch signal; and a package for packaging the die and the die-attach pad, wherein the die-attach pad generates the touch signal depending on whether a touch object is brought into contact with the package. The semiconductor device enables the size and position of a touch pad to be known in advance during the fabrication of a die so that a sensitivity adjusting process can be simplified. Also, since the touch pad is included in a touch sensor, a system can be simply configured at low cost. Furthermore, the touch sensor device requires no additional sensitivity adjusting process and enables a plurality of touch sensor systems to be constructed at low cost by simply connecting a small number of electrical signals.
Abstract:
An input device for a content providing device and a method of operating the same are provided. The input device includes: a pressure sensor having first pressure pads varying impedance according to contact strength, and periodically generating and outputting first pressure data having values corresponding to impedance of each of the first pressure pads; a button information generator for generating and outputting button information corresponding to the first pressure pad having the largest pressure data, when receiving the first pressure data; a pointing information generator for obtaining a position value of the first pressure pad having the largest pressure data when receiving the first pressure data, comparing the position value with the previously obtained position value to calculate a movement value of a contact position, and generating and outputting pointing information having the calculated movement value; and an operation selection unit for transmitting the first pressure data to the button information generator when the first pressure data transmitted from the pressure sensor is different from the previously obtained data and has a value larger than a button input value, and transmitting the first pressure data to the pointing information generator when the first pressure data transmitted from the pressure sensor is different from the previously obtained data and has value smaller than a pointing input value. Therefore, it is possible to perform various kinds of input operations using a single input device