Abstract:
A method, device and system for producing preselected products, (either finished products or preselected intermediary products) from biobased precursors. The principal features of the present invention include a method wherein a binary culture is incubated with a biobased precursor in a closed system to transform at least a portion of the biobased precursor to a preselected product. This improvement leads to significant savings in energy consumption and allows for the design of photobioreactors of any desired shape. The present invention also allows for the use of a variety of types of waste materials to be used as the organic starting material.
Abstract:
This invention provides co-cultures of photosynthetic microorganisms and biofuel producing microorganisms. In certain embodiments, polysaccharide-producing, photosynthetic microorganisms are microalgae having frustules provide a substrate on which biofuel-producing microorganisms can grow. In other embodiments, the photosynthetic microorganisms produce a lipid and the non-photosynthetic microorganisms produce a solvent in which the lipid is soluble.
Abstract:
A fuel cell comprising an anode electrode, a cathode electrode and a reference electrode electronically connected to each other; a first biocatalyst comprising a consolidated bioprocessing organism (e.g., a cellulomonad or clostridium or related strains, such as Cellulomonas uda (C. uda), C. lentocellum, A. cellolulyticus, C. cellobioparum, alcohol-tolerant C. cellobioparum, alcohol-tolerant C. uda, Clostridium cellobioparum (C. cellobioparum) and combinations thereof) capable of fermenting biomass (e.g., cellulosic biomass or glycerin-containing biomass) to produce a fermentation byproduct; and a second biocatalyst comprising an electricigen (e.g., Geobacter sulfurreducens) capable of transferring substantially all the electrons in the fermentation byproduct (e.g., hydrogen, one or more organic acids, or a combination thereof) to the anode electrode to produce electricity is disclosed. Systems and methods related thereto are also disclosng a consolidated bioprocessing organism.
Abstract:
The present invention relates to a mixed strain culture for the disposal of food waste, and more particularly, to a mixed strain culture for the disposal of food waste which has high degradation activity on cellulose, amylose, protein, and fat at a wide range of temperatures, pH levels, and salinities, and which can degrade food waste having a high moisture content and therefore can degrade food waste in an efficient manner. The present invention also relates to a food waste disposal method using the mixed strain culture.
Abstract:
Enhanced yields of photosynthetically fixed carbon produced by hypersaline photosynthetic algae are provided by co-culturing with a halophilic archaea. Further, methods are provided to control harvesting of desired metabolic products from hypersalinc photosynthetic algae by controlling caspase activity.
Abstract:
A dense but oxygen permeable membrane (28) separates the oxygen supply compartment (30) from the fermentation compartment (31), which contains all microorganisms, a nutrient medium and the pretreated lignocellulose. The oxygen, necessary for the growth and the activity of the aerobic cellulolytic enzymes producing microorganisms is solely transported from the oxygen supply compartment (30) through the membrane (28), which leads to an oxygen gradient within the biofilm growing on the membrane (28). The oxygen rich zone of the biofilm lies on the membrane (28) whereas the biofilm further away from the membrane as well as the surrounding nutrient medium are oxygen depleted. In the aerobic biofilm the extra-cellular enzymes are produced in situ and are released into the nutrient medium where they hydrolyse the cellulose and hemicellulose into soluble monosugars, which are then converted to the desired fermentation product by suitable microorganisms in the anaerobic zones of the reactor (21). The process can be run in batch mode as well as in a continuous mode.
Abstract:
Biological method for conversion of a sugar-containing organic material into a desired biochemical product. Use of a plurality of substrate-selective cells allows different sugars in a complex mixture to be consumed concurrently and independently. The method can be readily extended to remove inhibitory compounds from hydrolysate.
Abstract:
Provided are compositions and methods for sustainable cultivation of algae for biomass, biofuel and bioproduct production, preferably with minimal addition of exogenous nutrients, comprising co-cultivating at least one algal species with at least one aerobic bacterial species and at least one diazotroph (or, in certain embodiments, cultivation of at least one algal species with at least one diazotroph) under continuous sustainable symbiotic conditions, wherein a significant proportion of the macronutrients derive from endogenous decomposed algal and bacterial cells. Certain aspects provide continuous symbiotic diazotroph-attenuated nitrogen stress co-cultivation, wherein a continuous, balanced attenuated nitrogen-stress response provides for adequate sustained algal growth, while yet preserving advantages of algal nitrogen stress responses for algal bioproduct production. Preferred aspects provide for enhanced algal production of at least one of: lipids; triacylglycerols (TAGs); percentage of lips as TAGs; and percentage of saturated and mono-saturated fatty acids relative to polyunsaturated fatty acids (PUFAs) in TAGs.