Abstract:
An aerial vehicle includes at least one wing, a plurality of thrust producing elements on the at least one wing, a plurality of electric motors equal to the number of thrust producing elements for individually driving each of the thrust producing elements, at least one battery for providing power to the motors, and a flight control system to control the operation of the vehicle. The aerial vehicle may include a fuselage configuration to facilitate takeoffs and landings in horizontal, vertical and transient orientations, redundant control and thrust elements to improve reliability and means of controlling the orientation stability of the vehicle in low power and multiple loss of propulsion system situations. Method of flying an aerial vehicle includes the variation of the rotational speed of the thrust producing elements to achieve active vehicle control.
Abstract:
An external hook system for a rotary-wing aircraft includes a lower frame interface which accommodates longitudinal and lateral loads and an upper frame interface. A tension member is mountable between the lower frame interface and the upper frame interface to transfer tension loads between the lower frame interface and the upper frame interface.
Abstract:
A tiltrotor aircraft includes a rotatable nacelle that supports a rotor assembly and is pivotally attached to the aircraft's fuselage. A wing extension attaches to an outboard section of the nacelle. The wing extension provides additional yaw control during helicopter mode and additional lift during airplane mode. A method for controlling at least a portion of yaw movement includes positioning the rotor assembly in helicopter mode, creating rotor wash with the rotor assembly, and pivotally rotating the wing extension in the rotor wash.
Abstract:
A constant-velocity drive system for a rotary-wing aircraft rotor comprising a differential torque-splitting mechanism and a gimbal mechanism is disclosed. A rotary-wing aircraft having a rotary-wing aircraft rotor comprising a differential torque- splitting mechanism and a gimbal mechanism is disclosed.
Abstract:
A translational thrust system for a high speed rotary-wing aircraft includes a propeller system driven by a propeller gearbox, a hydraulic system, and a mechanical-hydraulic control system. The mechanical-hydraulic control system utilizes a hydraulic fluid which travels to and from a propeller dome via an oil transfer/position feedback tube which translates with a propeller pitch change piston. Translation of the oil transfer/position feedback tube and the propeller pitch change piston pitches the blades between high (coarse) and low (fine) pitch positions.
Abstract:
A rotorcraft having multiple rotors, and wings that provide lift in forward flight, has mechanical coupling between rotors that can be disengaged and optionally reengaged, during flight. The coupling can, which can prevent a failure of one rotor from interfering with rotation of the other rotor(s), can be accomplished using many different types of devices, including for example, dog clutches and friction clutches, and collapsible clutches. Disengagement can range from being completely under control of an operator, to partially under operator control, to completely automatic. Among many other benefits, designing, manufacturing, fitting, retrofitting or in some other manner providing an aircraft with a device that can disengage rotation of one of the rotors from that of another one of the rotors during flight can be used to improving survivability in an emergency situation.
Abstract:
In various representative aspects, an airborne delivery system according to various aspects of the present invention comprises a container and an autorotating rotor system. The container may contain contents, and the rotor system facilitates control of at least a portion of the flight of the airborne system and the descent. Exemplary features may include a guidance system, for example to guide and control the airborne system, and a wing for gliding.
Abstract:
A vertical takeoff and landing (VTOL) air vehicle disclosed. The air vehicle can be manned or unmanned. In one embodiment, the air vehicle includes two shrouded propellers (202), a fuselage (201) and a gyroscopic stabilization disk installed in the fuselage. The gyroscopic stabilization disk can be configured to provide sufficient angular momentum, by sufficient mass and/or sufficient angular velocity, such that the air vehicle is gyroscopically stabilized during various phases of flight. In one embodiment the fuselage is fixedly attached to the shrouded propellers. In another embodiment, the shrouded propellers are pivotably mounted to the fuselage.
Abstract:
A cycloidal propulsion unit for controlling a thrust vector includes a hub that rotates about a hub axis. Further, the unit includes an airfoil blade pivotally mounted on the hub along a blade axis parallel to the hub axis. As a result, the blade may pivot about the blade axis while traveling along a blade path during rotation of the hub. The unit further includes a ring that rotates around a ring axis parallel to the hub axis. The ring is interconnected with the blade via a control rod. Also, a device is engaged with the ring to selectively position the ring axis relative to the hub axis. As a result of these structures, selective positioning of the ring axis provides control of the rotation of the blade about the blade axis as the blade travels along the blade path.
Abstract:
The invention relates to multipurpose heavier-than-air aircrafts which can be used in the form of an airplane, helicopter or a sailplane. The inventive multipurpose heavier-than-air aircraft consists of a body comprising a tail assembly which is provided with a rudder, a pitch control surface and a chassis. A lifting forwardswept wing is fixed to the centre wing section of the body. A slotted opening closed with shutters is embodied in the top section of the body, wherein a driving engine used for sailplane mode and provided with a thrust propeller fixed to the shaft thereof is arranged. Said driving engine is cinematically connected to a carriage displacement drive by means of a main strut displacing mechanism. The carriage is provided with the position lock thereof corresponding to airplane, helicopter and sailplane flight modes. The carriage displacement drive is connected to an asymmetrical lever displacement mechanism. The major arm of said asymmetrical lever and an auxiliary strut are pivotally connected to the driving engine. Said auxiliary strut is pivotally connected to the rockshaft of the asymmetrical lever my means of a mechanism.