Abstract:
Systems and methods for regulating a bulk flame temperature in a dry low emission engine are provided. According to one embodiments of disclosure, a method may include measuring an exhaust gas temperature (EGT) and determining a target EGT. The target EGT is determined based at least in part on a compressor air flow percentage and a combustor burning mode. The method may include calculating a bias based at least in part on the EGT and the target EGT and applying the bias to a bulk flame temperature schedule. The method may include regulating one or more staging valves and compressor bleeds of the DLE engine based at least in part on the bulk flame temperature schedule. The bulk flame temperature schedule is mapped to parameters of the staging valves and compressor bleeds to reduce nitric oxide, nitrogen dioxide, and carbon monoxide emissions.
Abstract:
Embodiments of an apparatus for transferring energy between a rotating element and a fluid are provided herein. In some embodiments, a plenum of an apparatus for transferring energy between a rotating element and a fluid may include a through hole disposed through the plenum; and a plurality of inlet guide vanes disposed proximate a peripheral edge of the through hole, the plurality of inlet guide vanes comprising a first group of inlet guide vanes having a cambered profile and a second group of inlet guide vanes disposed radially inward of the first group of inlet guide vanes, wherein the first group of inlet guide vanes are in a fixed position with respect to the plenum and the second group of inlet guide vanes are movable with respect to the plenum.
Abstract:
A system for premixing fuel and air prior to combustion in a gas turbine engine includes a mixing duct, a centerbody fuel injector located along a central axis of the mixing duct, an outer annular swirler located adjacent an upstream end of the mixing duct for swirling air flowing therethrough in a first swirl direction and an inner annular swirler located adjacent of the mixing duct upstream end for swirling air flowing therethrough in a second swirl direction. The system includes a hub separating said inner and outer annular swirlers to permit independent rotation of an air stream therethrough and multiple hollow paths located radially outward around the centerbody fuel injector and at a radially inward side of the inner annular swirler for allowing a flow of sweeping air over the surface of the centerbody fuel injector.
Abstract:
An alternating current power generation system including an alternating current generator comprising an exciter, a brushless permanent magnet generator voltage source configured to generate a first voltage at a first frequency, a second voltage source configured to generate a second voltage at a second frequency, and a coil. Further, the brushless permanent magnet generator voltage source provides the first voltage as a supplemental voltage supply combined with the second voltage source at the coil to generate a constant exciter field received by the exciter of the alternating current generator.
Abstract:
A diverter (10) for redirecting drilling fluid in oilfield applications includes a support housing (14) and a diverter body (18) disposed therein. A lateral opening (20) defined in the diverter body permits fluid communication between an interior passage of the diverter body (18) and a lateral flow outlet defined by the support housing. A pair of flow-line seals (40) disposed radially between the support housing (14) and the diverter body (18) includes a flow-line seal disposed on axially upper and lower sides of the lateral flow outlet (22). The flow-line seals (40) include a pair of substantially rigid support rings (52, 54) and first and second sealing bodies (56, 58) adhered thereto.
Abstract:
A retainer is placed on a conduit to control movement of objects within the conduit in access- restricted areas. Retainers can prevent or allow movement in the conduit in a discriminatory fashion. A fork with variable-spacing between prongs can be a retainer and be extended or collapsed with respect to the conduit to change the size of the conduit. Different objects of different sizes may thus react to the fork differently, some passing and some being blocked. Retainers can be installed in inaccessible areas and allow selective movement in remote portions of conduit where users cannot directly interface, including below nuclear reactors. Position detectors can monitor the movement of objects through the conduit remotely as well, permitting engagement of a desired level of restriction and object movement. Retainers are useable in a variety of nuclear power plants and with irradiation target delivery, harvesting, driving, and other remote handling or robotic systems.
Abstract:
The present subject matter is directed to a system and method for producing a batwing light distribution. A lens is illuminated with a light source, preferably an LED, and the lens is configured to internally reflect a portion of the illuminating light back in a direction generally opposite to the initial illumination direction. Another portion of the light from the light source may pass through other lens surfaces but may also be reflected back past the light source with a reflector positioned on the other side of the lens from the light source. The light source may be mounted on a frame so as to obscure light therefrom from view.
Abstract:
The present invention relates to high intensity discharge ("HID") lamps which have an electrically insulating arc tube 14 including a central portion 38 with an interior discharge region and two legs 42 each extending from an end of the central portion, the central portion being a larger size than the legs. Electrical conductors extend through each of the legs and are ending in electrode components which are spaced apart from each other in the discharge region. A light transmitting envelope 12 encloses the arc tube, and a frame member 16,18 is electrically attached to one of the electrical conductors. An ignition aid 73-76 is provided which includes an electrically conductive element 73 disposed on one of the legs. The ignition aid includes a conductive layer 74-76 that extends from the electrically conductive element to the central portion 38.
Abstract:
A high voltage direct current (HVDC) converter system includes at least one line commutated converter (LCC) and at least one current controlled converter (CCC). The at least one LCC and the at least one CCC are coupled in parallel to at least one alternating current (AC) conduit and are coupled in series to at least one direct current (DC) conduit. The at least one LCC is configured to convert a plurality of AC voltages and currents to a regulated DC voltage of one of positive and negative polarity and a DC current transmitted in only one direction. The at least one current controlled converter (CCC) is configured to convert a plurality of AC voltages and currents to a regulated DC voltage of one of positive and negative polarity and a DC current transmitted in one of two directions.
Abstract:
A gearbox support apparatus includes: a gearbox carrier (16) having a central axis, the carrier (16) configured to mount one or more rotating gears (12, 18, 22) therein, the carrier (16) including spaced-apart forward and aft walls (26, 28), and a flexible center plate structure (58) disposed between the forward and aft walls (26, 28), an annular support ring (60) disposed axially adjacent to the carrier (16); and a plurality of axially- extending torque fingers (68) interconnecting the support ring (60) and the center plate structure (58).