Abstract:
A robotic system for remote operation of human-controllable equipment includes a remotely operable robotic subsystem configured to be at least one of mounted on or arranged adjacent to the human-controllable equipment to be controlled, and a remote controller that is configured to be operated by a human. The remote controller emulates a control representation of the human-controllable equipment such that a human can provide commands using the control representation. The remotely operable robotic subsystem is configured to receive commands from the remote controller to thereby operate the human-controllable equipment.
Abstract:
An electrode includes at least one of sulfur (S) or selenium (Se), and a functionalized metal organic framework (R-MOF), the functionalized metal organic framework (R-MOF) having a functional group (R) attached to an organic portion of a metal organic framework (MOF). The functionalized metal organic framework (R-MOF) is adapted to react with at least one of electrochemically accessible sulfur (S) or selenium (Se) to capture at least one of lithium polysulfide or sodium polysulfide via covalent attachment of sulfur (S) or selenium (Se), respectively, to the functional group (R) of the functionalized metal organic framework (R-MOF).
Abstract:
A monolithic tandem photovoltaic cell includes a first electrode; a CIGS light absorption section on the first electrode; an interconnecting layer on the CIGS light absorption section; and a perovskite light absorption section on the inter-connecting layer. The interconnecting layer has a polished surface on which the perovskite light absorption section is formed. The interconnecting layer provides an electrically conducting and optically transparent connection between the CIGS light absorption section and the perovskite light absorption section.
Abstract:
A crystal-free radio includes an antenna; a receiver configured to communicate with the antenna; a local radio frequency (RF) oscillator configured to communicate with the receiver; and a clock circuit configured to communicate with the receiver and the local RF oscillator, the clock circuit having an electronic circuit oscillator. The local RF oscillator is a free-running oscillator. The clock circuit is configured to receive a calibration signal via a wireless network and calibrate the electronic circuit oscillator based on the received calibration signal, and the clock circuit is a crystal-free clock circuit.
Abstract:
A blood pressure monitoring device includes a body portion having a size and structure to extend around an appendage of a user during use, a fluid bladder at least one of attached to or integral with the body portion and arranged to be able to apply pressure to an adjacent artery or vein of the user during use, a pressure actuator fluidly connected to the fluid bladder, a controller configured to provide control signals to the pressure actuator to fill the fluid bladder to selected pressures, a signal processor configured to communicate with the controller to receive signals indicating the selected pressures to which the fluid bladder is filled, and a pressure sensor arranged in operative contact with the fluid bladder to measure blood pressure waveforms plus bladder fluid pressure to provide a pressure waveform signal containing information regarding a relationship between vessel distention and transmural pressure. The pressure sensor is further configured to communicate with the signal processor to provide the pressure waveform signal to the signal processor. The controller is configured to provide a plurality of selected pressures that are less than a mean arterial pressure of the user, and the signal processor is configured to calculate blood pressure parameters using pressure waveform signals produced during application of the plurality of selected pressures that are less than the mean arterial pressure of the user.
Abstract:
A mechanical translation apparatus includes a translation stage and a translation assembly operatively connected to the translation stage so as to impart linear motions to the translation stage substantially free of rotational motions. The translation assembly includes a plurality of at least three arms pivotably connected to the translation stage at a first end of each arm of the plurality of at least three arms. The mechanical translation apparatus also includes a base assembly in which each arm of the plurality of at least three arms is also rotationally connected to the base assembly at a second end of each arm. Each arm of the plurality of at least three arms includes three rigid elongate structures arranged substantially parallel and non-coplanar with respect to each other so as to act in cooperation to cancel torques so that substantially purely linear motion is imparted to the translation stage by the plurality of at least three arms, and the translation assembly constrains motion of the translation stage to be substantially purely translational motion free of rotational motion. A robot includes the mechanical translation apparatus.
Abstract:
A motion-compensated cutting system includes a hand-held tool body, and an actuator connected to the tool body. A shaft of the actuator is movable relative to the tool body so that a distal end of a cutting implement attached to the shaft is axially movable relative to the tool body. An optical coherence tomography system includes an optical fiber with a distal end fixed relative to the distal end of the cutting implement. The system includes a control unit that can determine a position of the distal end of the cutting implement relative to a reference surface based on input from the optical coherence tomography system. The control unit can control the cutting implement to compensate for relative motion between the tool body and the reference surface, and can maintain a predetermined depth of the distal end of the cutting implement with respect to the reference surface.
Abstract:
A computer-implemented method, medical imaging system and non-transitory computer-readable storage medium for determining risk of sudden cardiac death in a patient, including receiving imaging data of said patient's heart; constructing a three-dimensional geometrical representation of at least a portion of said patient's heart using said imaging data; calculating, using at least one data processor, a shape metric for each of a plurality of segmented myocardial wall regions of said patient's heart using said three-dimensional geometrical representation to provide a plurality of shape-metric values; and calculating, using the at least one data processor, a risk factor corresponding to a risk for sudden cardiac death in said patient based on said plurality of shape-metric values.
Abstract:
An eye tracking and gaze fixation detection system, includes an electronically scannable optical illumination system emits polarized near-infrared (NIR) light to a retina in an eye of a subject; an optical detection system arranged in an optical path of the NIR light after being reflected from the retina of the eye of the subject, the optical detection system providing a detection signal; and a signal processing system communicates with the optical detection system to receive the detection signal, wherein the optical illumination system emits the polarized NIR light to illuminate at least a portion of a scanning path, wherein the scanning path is a spatially closed loop across a portion of the retina in the eye of the subject that repeats periodically over time, and wherein the signal processing system is configured to determine at least one of a gaze direction and a gaze fixation based on the detection signal.
Abstract:
A probe for a common path optical coherence tomography system includes a sheath having a proximal end and a distal end and defining a lumen therein, a single mode optical fiber disposed within the lumen of the sheath such that a portion of the single mode optical fiber extends beyond the distal end of the sheath. The single mode optical fiber has an end face for transmitting and receiving light. The probe also includes a layer of hardened epoxy encasing the portion of the single mode optical fiber that extends beyond the distal end of the sheath except for the end face. The single mode optical fiber has an optical axis extending along a longitudinal direction of the single mode optical fiber. The hardened epoxy is polished at a non-orthogonal angle relative to the optical axis at the end face.