Abstract:
Self-erectable displays and methods of making such self-erectable displays are disclosed. An example apparatus includes a shroud (102) including a first shroud panel (106), a second shroud panel (108) coupled to the first shroud panel, and an interior formed between the first shroud panel and the second shroud panel; a support (122, 123) disposed in the interior of the shroud, the support including a first tongue (209) and a second tongue, the first tongue to extend through a first aperture of the support (218), the second tongue to extend through a second aperture of the support, the first and second tongues to extend in opposing directions; and a biasing member (220) coupled to the support to cause a portion of the first shroud panel to separate from a portion of the second shroud panel.
Abstract:
Sealed end points and methods of making the same are disclosed. An example method includes disposing a first flange of a lid within a groove of a housing. The groove is defined by first and second walls of the housing and lid. The method also includes means for welding two stationary components while rotating a third component to weld the three components together. The second flange is positioned between the first flange and the first wall. The housing, the lid, and the collar include a thermoplastic material. The method includes securing the housing and the lid relative to one another and spin welding the housing, the lid, and the collar.
Abstract:
Powered safety curtains are disclosed herein. An example safety barrier assembly to control access to equipment includes a track and a barrier including a receptacle. The barrier is to be moveable within the track between an open position and a closed position. The open position is to enable access to the equipment, the closed position to substantially prevent access to the equipment. The example safety barrier assembly also includes a sensor to identify when the safety barrier is in the closed position and a securing device comprising a portion to be received by the receptacle when the barrier is identified as being in the closed position. An interaction between the portion and the receptacle is to prevent the barrier from moving out of the closed position.
Abstract:
Systems and methods for media content development and deployment are disclosed. An example system includes a development platform and content delivery platform, the platforms including a processor and a memory. The example development platform is to provide an interface to accept media content from a provider to be certified for delivery via the delivery platform. The example development platform is to facilitate testing of the media content by the provider via the interface according to testing tools and an application programming interface provided in conjunction with the development platform. The example development platform is to process the media content for monitored beta test by users via the content delivery platform. The example development platform is to evaluate the monitored beta test to determine suitability of the media content for release. The example development platform is to facilitate release of the media content for general availability via the content delivery platform.
Abstract:
In some example pliable air duct systems, inflatable ducts of various diameters and lengths are created by selectively assembling pre-existing stock pieces in different combinations. In some examples, the stock pieces include disconnectable longitudinal joints and disconnectable circumferential joints, wherein the longitudinal joints enable interconnecting multiple stock pieces to achieve a desired tube diameter, and the circumferential joints allow connecting multiple tube segments end-to-end to produce an air duct assembly of a desired length. To control the volume and/or the direction of air discharged from the duct, the duct assembly, in some examples, includes an adjustable register comprising a movable pliable sheet that overlies a discharge opening in a pliable sidewall of the duct. In some examples, the inflatable duct includes one or more cutout patterns on the duct's sidewall to provide guidance in creating a sidewall discharge opening of a proper size and location.
Abstract:
Well assemblies and related methods are disclosed. In accordance with an implementation, an apparatus includes a well assembly including a body and an insert. The body has a well and the insert includes a sidewall defining an opening and a venting membrane coupled to the insert and extending across the opening. The insert is received within the well and wherein a coupling is formed between the sidewall of the insert and the body.
Abstract:
Cartridges and related systems and methods are disclosed. In accordance with an implementation, a method includes securing a sample container in a sample container receptacle of a cartridge using a sample container lock and coupling the cartridge to a cartridge receptacle of a system. The method also includes depositing a sample from the sample container within a sample well of the cartridge and determining a presence of a target molecule within the sample using the system. In response to the target molecule being present within the sample, the method includes releasing the sample container lock of the cartridge to allow the sample container to be removed from the sample container receptacle and for the cartridge to remain coupled to the system.
Abstract:
Microarrays, hybridization seals and related methods. An apparatus includes a substrate including a plurality of probes and a hybridization seal. The hybridization seal includes an evaporation barrier and a layer including walls that form a grid pattern and define a plurality of sample chambers that are to receive fluid. The layer includes a first side removably coupled to the substrate and a second side that is coupled to the evaporation barrier. The evaporation barrier includes barrier sections that cover the probes and include one or more slits that allow the barrier sections to have a convex profile or a concave profile depending on an amount of the fluid within the corresponding sample chamber.
Abstract:
An apparatus and examples of methods for using and manufacturing aspects of an apparatus with a sensor having an active surface. A sensor, a lid, and a flow channel bounded by the lid and a surface of the sensor, and including an illumination source, a heater, and a pump. A method includes fluidically coupling a first flow cell and a second flow cell to a reservoir, moving fluid from the reservoir into a flow channel of the first and second flow cell using respective pumps; and heating fluid in the flow channels of the first and second flow cells using respective heaters. A method includes forming a first sensor and a second sensor on a flexible surface, and folding the flexible surface until the first sensor faces the second sensor.
Abstract:
An apparatus includes a flow cell interface adapted to be coupled to a flow cell having a plurality of channels and a pump manifold assembly carrying pump valves and pumps and including pump-channel fluidic lines, pump fluidic lines, and a shared fluidic line. The pump valves and the pumps are operable to individually control fluid flow through each channel of the plurality of channels of the flow cell via the corresponding pump-channel fluidic lines. Each pump valve being coupled to a corresponding pump-channel fluidic line, a corresponding pump fluidic line, and the shared fluidic line and being movable between a first position fluidically coupling a corresponding channel, a corresponding pump-channel fluidic line, and a corresponding pump fluidic line and a second position fluidically coupling a corresponding pump fluidic line, the shared fluidic line, and a waste reservoir. Each pump coupled to a corresponding pump fluidic line.