Abstract:
Systems, methods, and apparatus for dispensing a lubricant are provided, in which, for example, the apparatus includes a chamber having an inlet through which the lubricant is received and an outlet through which the lubricant is ejected. The apparatus also includes a piston movably positioned in the chamber to take lubricant into the chamber and eject it therefrom. The apparatus further includes a sensor configured to take a measurement of a condition related to a force applied to the piston to move the piston in the chamber. The apparatus additionally includes a controller coupled with the sensor so as to receive data related to the measurement from the sensor. The controller is configured to determine, using the measurement, an amount of lubricant ejected by the piston
Abstract:
A compression system and method of manufacturing a compression system are provided. The compression system includes a compressor, and a tank rotatably coupled with the compressor and configured to receive a compressed fluid therefrom. The compression system further includes a sheave configured to receive a hose, with the sheave being coupled with the tank such that the sheave and the tank are rotationally fixed relative to one another and rotatable with respect to the compressor.
Abstract:
A cartridge bearing assembly for rotatably coupling a shaft with a housing includes a bearing having a central axis and opposing axial ends. The bearing includes first and second, axially spaced inner rings disposeable upon the shaft, at least one outer ring disposed circumferentially about the two inner rings, and first and second sets of rolling elements disposed between the inner and outer rings. A carrier includes a first tubular portion disposed generally about the bearing first axial end and a second tubular portion disposed generally about the bearing second axial end. The first and second tubular portions are coupled together to enclose the bearing, the carrier being at least partially disposeable within the housing bore so as to couple the bearing with the housing. Preferably, a coupler is provided to connect the first and second inner rings so as to establish preload within the bearing.
Abstract:
A device for evacuating and filling a vehicle cooling system includes a housing having an interior chamber. A service port extends into the housing and connectable with the vehicle cooling system, a supply port extends into the housing and connectable with a source of coolant fluid, and an evacuation port extends into the housing. A valve is disposed at least partially within the housing chamber and is adjustable between a first configuration in which the service port is fluidly coupled with the evacuation port and a second configuration in which the service port is fluidly coupled with the supply port.
Abstract:
A shaft sealing assembly for static and dynamic sealing includes a stator member attached to a housing and a rotor member attached to a shaft rotatable about an axis. The rotor member includes first and second pocket sections extending from upper and lower radial flanges extending in a cantilevered fashion from a tubular member. At least one static sealing member is attached to and encapsulates each pocket section. Each static sealing member presents a core portion and a pair of radial lips extending from the core portion. The stator member presents an annular wall extending to inner walls inclined conically to a central radial rim or flange separating two pocket portions and the static sealing members presenting a contact and frictionally engaging with the central radial rim as the rotor member is at a stand-still or static position.
Abstract:
A seal assembly is provided for sealing a space between a housing and a shaft, the housing having a bore with centerline and the shaft being disposed within the bore and rotatable about a central axis. The seal assembly includes an annular rotary seal member coupled with the shaft and having a radial rotary sealing surface. An annular static seal member is coupled with the housing, disposed about the shaft and has a radial static sealing surface disposed against the rotary sealing surface so as to prevent passage of substances between the two sealing surfaces. The rotary sealing surface is slideable against the static sealing surface as the shaft rotates about the axis and the static member is movable with respect to the housing such that the rotary and static sealing surfaces are substantially juxtaposed when the shaft axis defines an acute angle with respect to the housing centerline.
Abstract:
A seal is for sealing a clearance space between first and second members disposed generally coaxially about an axis, one of the two members being linearly displaceable generally along the axis relative to the other one of the two members. The seal includes a generally annular body coupled with the first member, the body having a centerline generally coaxial with the central axis, a sealing surface extending circumferentially about the axis, and a plurality of projections extending generally radially from the sealing surface and into contact with the second member. The projections are spaced circumferentially about the axis so as to define a separate lubrication gap between each pair of adjacent projections. The body is configured to radially deflect when exposed to at least a predetermined fluid pressure such that recessed sections of the sealing surface extending between the projections contact the second member to substantially obstruct the clearance space.
Abstract:
A seal assembly is for a shaft rotatable about an axis, having an outer circumferential surface and being disposed within a housing having an inner circumferential surface defining a bore. The seal assembly includes an annular base member having an outer circumferential surface and a central opening for receiving the shaft with clearance, the base member being sized such that the base outer surface is engageable with the housing inner surface to form an interference fit to retain the seal assembly. An annular seal member is disposed on the base member and has an inner circumferential sealing surface for sealing against the shaft outer surface and an outer circumferential sealing surface for sealing against the housing inner surface. A support member includes a one-piece annular body, is disposed generally between the seal member sealing surface and a portion of the base member, and prevents axial deflection of the sealing member.
Abstract:
A bearing assembly is for a mechanism including a housing and a rotatable shaft disposed within the housing. The bearing assembly includes a sleeve disposeable within the housing and having an inner circumferential surface defining a bore and a radial surface extending radially inwardly from the inner surface. A bearing is disposed within the bore and includes inner and outer races and rolling elements disposed between the races, the inner race being coupleable with the shaft such that the shaft and the inner race rotate as a single unit. Further, a biasing member biases the outer race generally against the sleeve radial surface or a housing radial surface to prevent axial displacement of the outer race during shaft rotation. Preferably, a retainer couples the biasing member with the outer race to retain the bearing and the biasing member within the bore when the assembly is separate from the housing.
Abstract:
A milling machine includes a main frame, a rotatable cutter drum coupled with the frame, and an engine mounted to the frame and operatively connected with the drum, and crawler assemblies connected with the frame and including a hydraulic motor. A pump is disposed on the frame for driving the crawler motor and is adjustable to vary a speed of the motor. A regulator adjusts cutter drum speed, a speed selector generates an input corresponding to a desired drum speed, and a sensor senses a drum speed. A control receives input from the selector and the sensor and operates the regulator such that drum speed corresponds to the desired speed. Further, the control also compares sensed drum speed with desired drum speed and adjusts the pump to reduce crawler motor speed when the sensed drum speed has a value lesser than a predetermined portion of the desired drum speed.