Abstract:
An electronic device can be provided with a heat-generating component and a cooling module for dissipating heat. In some embodiments, the cooling component may include a fan configured to produce an outflow of air, and a divider configured not only to direct a first portion of the outflow between a first surface of the divider and the heat-generating component, but also to direct a second portion of the outflow along a second surface of the divider. In other embodiments, the cooling component may include a divider and a pressure clip. A first portion of the pressure clip may be configured to exert a pressure on a first surface of the divider such that the pressure may hold a portion of a second surface of the divider in contact with the heat-generating component.
Abstract:
A portable computing device includes a housing having an external surface and an inner surface. A solid-state cooling mechanism in the computing device is coupled to the inner surface. This solid-state cooling mechanism is configured to maintain a temperature difference across at least a portion of the external surface that is less than a pre-determined value.
Abstract:
A cooling mechanism includes a first heat exchanger, a first fluid-flow port, and a second fluid-flow port. The first heat exchanger includes a forced-fluid driver to pump heat from inside an enclosed area to outside of the enclosed area. The first fluid-flow port accommodates a first fluid flow into the enclosed area and the second fluid-flow port is configured to accommodate a second fluid flow from the enclosed area. Note that the first fluid-flow port and the second fluid-flow port are approximately coplanar. In addition, a given fluid-flow port is tapered to have an associated cross-sectional area which is smaller at an edge of the given fluid-flow port that is proximate to the outside of the enclosed area than at an edge of the given fluid-flow port that is proximate to the inside of the enclosed area.
Abstract:
A system includes a power source and a heat-shield mechanism which encloses the power source. This heat-shield mechanism includes a 3-dimensional housing that defines a cavity in which the power source resides, and a plate that is positioned to cover an opening to the cavity that is defined by an edge of the housing. Note that the housing contains three layers in which a second layer is sandwiched between a first layer and a third layer. This second layer has a first anisotropic thermal conductivity. Furthermore, the plate includes a material having a second anisotropic thermal conductivity.
Abstract:
An electronic device can be provided with a heat-generating component and a cooling module for dissipating heat. In some embodiments, the cooling component may include a fan configured to produce an outflow of air, and a divider configured not only to direct a first portion of the outflow between a first surface of the divider and the heat-generating component, but also to direct a second portion of the outflow along a second surface of the divider. In other embodiments, the cooling component may include a divider and a pressure clip. A first portion of the pressure clip may be configured to exert a pressure on a first surface of the divider such that the pressure may hold a portion of a second surface of the divider in contact with the heat-generating component.
Abstract:
Embodiments of a device are described. This device includes an integrated circuit and a heat spreader coupled to the integrated circuit. This heat spreader includes a first layer of an allotrope of carbon. Note that the allotrope of carbon has an approximately face-centered-cubic crystal structure. Furthermore, the allotrope of carbon has a thermal conductivity greater than a first pre-determined value and a specific heat greater than a second pre-determined value.
Abstract:
Embodiments of a device are described. This device includes an integrated circuit and a heat spreader coupled to the integrated circuit. This heat spreader includes a first layer of an allotrope of carbon. Note that the allotrope of carbon has an approximately face-centered-cubic crystal structure. Furthermore, the allotrope of carbon has a thermal conductivity greater than a first pre-determined value and a specific heat greater than a second pre-determined value.
Abstract:
A portable computing device includes a housing having an external surface and an inner surface. A solid-state cooling mechanism in the computing device is coupled to the inner surface. This solid-state cooling mechanism is configured to maintain a temperature difference across at least a portion of the external surface that is less than a pre-determined value.