Abstract:
The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
Abstract:
One aspect of the invention relates to industrial bioconversion of the xylose portion of biomass materials into fuels and chemicals. Another aspect of the invention relates to industrial bioconversion of the xylan portion of biomass materials into fuels and chemicals. In one embodiment, the invention is directed to the bacterium Clostridium thermocellum, a highly cellulolytic organism that has much potential as a biocatalyst in a consolidated bioprocess configuration. In some embodiments, the invention is a genetic modification that confers the ability to ferment xylose to C. thermocellum and the strains created with this modification. In some embodiments, the genetic modification is composed of two genes contained in an operon from T. saccharolyticum . The genes express proteins with xylose isomerase (XI) and xylulokinase activites (XK). In other embodiments, the invention relates to a recombinant Clostridium thermocellum host cell capable of fermenting xylan.
Abstract:
The present invention relates to the field of molecular biology and genetic tool development in thermophilic bacteria. In particular, it relates to the use of positive and/or negative selection markers that can be used to efficiently select modified strains of interest. By providing such capabilities, the disclosed invention facilitates the recycling of genetic markers in thermophilic bacterial host cells. The present invention also allows the creation of unmarked strains. The genetic tools disclosed in the present invention are prerequisites for making targeted higher order mutations in a single thermophilic strain background.
Abstract:
The present invention provides for novel metabolic pathways to reduce or eliminate glycerol production and increase product formation. More specifically, the invention provides for a recombinant microorganism comprising a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source, such as lignocellulose, to a product, such as ethanol, wherein the one or more native and/or heterologous enzymes is activated, upregulated, or downregulated. The invention also provides for a recombinant microorganism comprising one or more heterologous enzymes that function to regulate glycerol synthesis and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source to ethanol, wherein said one or more native and/or heterologous enzymes is activated, upregulated or downregulated.
Abstract:
One aspect of the invention relates to industrial bioconversion of the xylose portion of biomass materials into fuels and chemicals. Another aspect of the invention relates to industrial bioconversion of the xylan portion of biomass materials into fuels and chemicals. In one embodiment, the invention is directed to the bacterium Clostridium thermocellum, a highly cellulolytic organism that has much potential as a biocatalyst in a consolidated bioprocess configuration. In some embodiments, the invention is a genetic modification that confers the ability to ferment xylose to C. thermocellum and the strains created with this modification. In some embodiments, the genetic modification is composed of two genes contained in an operon from T. saccharolyticum. The genes express proteins with xylose isomerase (XI) and xylulokinase activites (XK). In other embodiments, the invention relates to a recombinant Clostridium thermocellum host cell capable of fermenting xylan.
Abstract:
The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
Abstract:
One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.
Abstract:
The present invention is directed to a. yeast strain, or strains, secreting a full suite, or any subset of that, full suite, of enzymes to hydrolyze com starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicelhiiose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction. The resulting strain, or strains, can be further used to reduce the amount of external enzyme needed to hydrolyze a biomass feedstock during an Simultaneous Saccharification and Fermentation (SSF) process, or to increase the yield of ethanol during SSF at current saccharolytic enzyme loadings. In addition, multiple enzymes of the present invention can be co-expressed in cells of the invention to provide synergistic digestive action on biomass feedstock. In some aspects, host cells expressing different heterologous saccharolytic enzymes can also be co-cultured togetherand used to produce ethanol from biomass feedstock.
Abstract:
The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
Abstract:
The present invention is directed to a. yeast strain, or strains, secreting a full suite, or any subset of that, full suite, of enzymes to hydrolyze com starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicelhiiose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction. The resulting strain, or strains, can be further used to reduce the amount of external enzyme needed to hydrolyze a biomass feedstock during an Simultaneous Saccharification and Fermentation (SSF) process, or to increase the yield of ethanol during SSF at current saccharolytic enzyme loadings. In addition, multiple enzymes of the present invention can be co-expressed in cells of the invention to provide synergistic digestive action on biomass feedstock. In some aspects, host cells expressing different heterologous saccharolytic enzymes can also be co-cultured togetherand used to produce ethanol from biomass feedstock.