Abstract:
A system for at least partial closed-loop control of a medical condition is disclosed. The system includes at least one medical fluid pump. The medical fluid pump including a sensor for determining the volume of fluid pumped by the pump. Also, at least one continuous analyte monitor, and a controller. The controller is in communication with the medical fluid pump and the at least one continuous analyte monitor. The controller includes a processor. The processor includes instructions for delivery of medical fluid based at least on data received from the at least one continuous analyte monitor.
Abstract:
A prosthetic arm apparatus including a plurality of segments that provide a user of the prosthetic arm apparatus with substantially the same movement capability and function as a human arm. The segments are connectable to one another and connectable to a prosthetic support apparatus that may be adorned by the user. Some segments may provide movement about more than one axis using a single actuator. The prosthetic arm apparatus may include a user interface incorporated therein and may include one or more communication systems for communicating with external devices.
Abstract:
A system for at least partial closed-loop control of a medical condition is disclosed. The system includes at least one medical fluid pump. The medical fluid pump including a sensor for determining the volume of fluid pumped by the pump. Also, at least one continuous analyte monitor, and a controller. The controller is in communication with the medical fluid pump and the at least one continuous analyte monitor. The controller includes a processor. The processor includes instructions for delivery of medical fluid based at least on data received from the at least one continuous analyte monitor.
Abstract:
A medical device system is disclosed. The medical device system includes a first medical device and a second medical device. A remote interface including a touch screen is also included. The remote interface is in wireless communication with the first medical device and the second medical device. The remote interface is configured to provide a user interface to the first medical device and the second medical device. The remote interface is configured to receive user input through a touch screen. Also, a charging device is included. The charging device is configured to receive at least the first medical device and the remote interface and the charging device is configured to recharge a first medical device battery and the charging device is configured to recharge an interface battery in the remote interface. The charging device is connected to a personal computer wherein the personal computer provides information to the remote interface.
Abstract:
A medical device system is disclosed. The medical device system includes a first medical device and a second medical device. A remote interface including a touch screen is also included. The remote interface is in wireless communication with the first medical device and the second medical device. The remote interface is configured to provide a user interface to the first medical device and the second medical device. The remote interface is configured to receive user input through a touch screen. Also, a charging device is included. The charging device is configured to receive at least the first medical device and the remote interface and the charging device is configured to recharge a first medical device battery and the charging device is configured to recharge an interface battery in the remote interface. The charging device is connected to a personal computer wherein the personal computer provides information to the remote interface.
Abstract:
A magnetic field focusing assembly includes a magnetic field generating device configured to generate a magnetic field, and a split ring resonator assembly configured to be magnetically coupled to the magnetic field generating device and configured to focus the magnetic field produced by the magnetic field generating device.