Abstract:
Methods and systems that facilitate data delivery to electronic devices are disclosed. One aspect pertains to data delivery to electronic devices that are portable, such as, mobile devices. In one embodiment, one mobile device discovers another mobile device within its vicinity. The mobile devices can then wirelessly transmit data from one mobile device to the other. The mobile devices, or their users, can control, request or influence the particular data content being delivered.
Abstract:
Methods and systems that facilitate data delivery to electronic devices are disclosed. One aspect pertains to data delivery to mobile devices. In one embodiment, a local server is provided at a particular location, such as at an establishment, venue, etc. The local server can operate to locally wirelessly transmit data to mobile devices within its vicinity. Typically, the mobile devices are associated with persons (users) at the particular location. The mobile devices, or their users, can control, request or influence the particular data content being delivered. The local server can also provide customized data to the mobile devices, individually or as a group. The customization can be based on location, characteristics, interests, preferences and/or requests of the users of the mobile devices.
Abstract:
Methods and systems for providing a lifestyle companion system are provided. The lifestyle companion system can provide a platform to conduct a user interview. Based on the user interview responses, the system can suggest activities, references, and/or plug-in modules. During performance of activities, the system can provide audio and/or visual cues related to the activities and collect data indicative of the user's performance. Based on the collected data, the system can dynamically adapt the user's goals and/or activities the user is performing or will perform. In some embodiments of the present invention, the lifestyle companion system of the present invention can be applied to fitness, nutrition, and/or medical modules. The system also can be used to facilitate synchronous group activities.
Abstract:
Methods and systems that facilitate data delivery to electronic devices are disclosed. One aspect pertains to data delivery to electronic devices that are portable, such as, mobile devices. In one embodiment, one mobile device discovers another mobile device within its vicinity. The mobile devices can then wirelessly transmit data from one mobile device to the other. The mobile devices, or their users, can control, request or influence the particular data content being delivered.
Abstract:
Methods and systems for providing a lifestyle companion system are provided. The lifestyle companion system can provide a platform to conduct a user interview. Based on the user interview responses, the system can suggest activities, references, and/or plug-in modules. During performance of activities, the system can provide audio and/or visual cues related to the activities and collect data indicative of the user's performance. Based on the collected data, the system can dynamically adapt the user's goals and/or activities the user is performing or will perform. In some embodiments of the present invention, the lifestyle companion system of the present invention can be applied to fitness, nutrition, and/or medical modules. The system also can be used to facilitate synchronous group activities.
Abstract:
A wireless network system can be provided with a one-way communication link for communicating a beacon signal between beacon circuitries of two electronic devices. According to information stored in the beacon signal, the device that receives the beacon signal can activate a primary communication circuitry to enable communication of primary communication data signals with a primary communication circuitry of the device that transmitted the beacon signal. The beacon circuitries of the two devices may require less power than the primary communication circuitries of the two devices.
Abstract:
An accessory communicates with a PMD to store tags associated with broadcasts in a file maintained in a storage medium of the accessory, where the tags contain information descriptive of a subset of the broadcast content. In one embodiment, the accessory sends commands to the PMD to create or open a tag file that resides on the PMD, write one or more tags to the file, and close the file. Stored tags can be used to access (e.g., purchase) tagged content by communicating with a media asset delivery service either via a host computer or directly from the PMD.
Abstract:
An accessory communicates with a PMD to store tags associated with broadcasts in a file maintained in a storage medium of the accessory, where the tags contain information descriptive of a subset of the broadcast content. In one embodiment, the accessory sends commands to the PMD to create or open a tag file that resides on the PMD, write one or more tags to the file, and close the file. Stored tags can be used to access (e.g., purchase) tagged content by communicating with a media asset delivery service either via a host computer or directly from the PMD.
Abstract:
An accessory communicates with a PMD to store tags associated with broadcasts in a file maintained in a storage medium of the accessory. In one embodiment, the accessory sends a command to the PMD to create or open a tag file that resides on the PMD. Once opened, the tag file is held open by the PMD until the accessory closes it (or disconnects), allowing multiple tags to be written to one file. Each time the user requests a new tag, the accessory generates a tag containing information descriptive of the broadcast material (e.g., song title, artist, radio station identifier, time of tagging, etc.) and writes the tag to the tag file using a write command to the PMD.
Abstract:
A wireless network system can be provided with a one-way communication link for communicating a beacon signal between beacon circuitries of two electronic devices. According to information stored in the beacon signal, the device that receives the beacon signal can activate a primary communication circuitry to enable communication of primary communication data signals with a primary communication circuitry of the device that transmitted the beacon signal. The beacon circuitries of the two devices may require less power than the primary communication circuitries of the two devices.