Abstract:
A process of forming optically clear conductive metal or metal alloy thin films is provided that includes depositing the metal or metal alloy film on a polycrystalline seed layer that has been deposited directly on a nucleation layer of metal oxide comprising zinc oxide. Also conductive films made by this process are provided. In some embodiments, the metal alloy thin films include silver/gold alloys.
Abstract:
Solar control films containing a visible light-transmissive flexible support, a first nucleating oxide seed layer, a first metal layer, an organic spacing layer, a second nucleating oxide seed layer, a second metal layer and a polymeric protective layer. The thicknesses of the metal layers and spacing layer are such that the films are visible light-transmissive and infrared-reflective. The films have high visible light transmittance, high Reflected Energy and low Total Solar Heat Transmission
Abstract:
Solar control films containing a visible light-transmissive flexible support, a first nucleating oxide seed layer, a first metal layer, an organic spacing layer, a second nucleating oxide seed layer, a second metal layer and a polymeric protective layer. The thicknesses of the metal layers and spacing layer are such that the films are visible light-transmissive and infrared-reflective. The films have high visible light transmittance, high Reflected Energy and low Total Solar Heat Transmission
Abstract:
A conductive film is formed on a flexible polymer support by applying a seed layer comprising gallium oxide, indium oxide, magnesium oxide, zinc oxide or mixture (including mixed oxides) thereof to the flexible polymer support, and applying an extensible, visible light-transmissive metal layer over the seed layer. The seed layer oxide desirably promotes deposition of the subsequently-applied metal layer in a more uniform or more dense fashion, or promotes earlier formation (viz., at a thinner applied thickness) of a continuous metal layer. The resulting films have high visible light transmittance and low electrical resistance.
Abstract:
Electrically conductive films comprising a flexible support, an extensible metal or metal alloy layer, and a crosslinked polymeric protective layer have at least one permanently deformed curved region. The films can be light transmissive and can have regions of compound curvature, and the metal or metal alloy layer can be substantially continuous. The films have reduced susceptibility to fracture or corrosion compared to commercially available electromagnetic interference (EMI) shielding films.
Abstract:
A device or an enclosed area that can cause or is sensitive to electromagnetic interference (EMI) is shielded by at least partially surrounding the device or the area with a visible light-transmissive film comprising a flexible support, an extensible visible light-transmissive metal or metal alloy layer and a visible light-transmissive crosslinked polymeric protective layer, and optionally connecting at least one grounding electrode to the metal or metal alloy layer. The film has reduced susceptibility to fracture or corrosion compared to commercially available EMI shielding films, especially when bent or deformed.
Abstract:
Antireflective transparent EMI shielding optical filters are provided that can be laminated to optical display devices using optically clear adhesives. The provided filters include electrically-conductive metal or metal alloy layers that can be continuous and patterned or unpatterned. Also included are methods of making the provided filters and touch sensors made using the provided filters.
Abstract:
A method for forming an inorganic or hybrid organic/inorganic barrier layer on a substrate, comprising condensing a vaporized metal alkoxide to form a layer atop the substrate, and contacting the condensed metal alkoxide layer with water to cure the layer is provided.
Abstract:
A method for forming an inorganic or hybrid organic/inorganic layer on a substrate, which method comprises vaporizing a metal alkoxide, condensing the metal alkoxide to form a layer atop the substrate, and contacting the condensed metal alkoxide layer with water to cure the layer is disclosed.
Abstract:
Antireflective transparent EMI shielding optical filters are provided that can be laminated to optical display devices using optically clear adhesives. The provided filters include electrically-conductive metal or metal alloy layers that can be continuous and patterned or unpatterned. Also included are methods of making the provided filters and touch sensors made using the provided filters.