Abstract:
Provided are nanoparticle-based vaccines that have an adjuvant coating attached to the external surface thereof to serve as an immunopotentiator. Most advantageously the nanoparticle vaccines have IgM antibodies attached to the external surface of an antigenic nanoparticle to serve as an immunopotentiator. The IgM may be attached by specifically binding to an epitope of the underlying nanoparticle including, but not limited to, the target vaccine immunogen. Since, however, the availability of specific IgMs is limited and less than the number of potential antigens that may be used as vaccines, attaching an IgM of the disclosure may require a hapten molecule that can be attached to the nanoparticle. By selecting a hapten that can be specifically recognized and bound by an IgM, it is possible to attach the hapten-specific IgM to a wide-variety of vaccine antigens.
Abstract:
A method and apparatus for testing and characterizing circuits is provided. In one embodiment, a high-speed interface of a semiconductor component includes high-speed test circuitry. The high-speed test circuitry obviates the need for an external high-speed testing system for testing and characterization. In one embodiment, the high-speed test circuitry includes a test pattern generation circuit, and various differential comparators to compare low bandwidth reference signals with interface signals during testing and characterization. In one embodiment, an interface that includes the test circuitry can test itself or another interface. In one embodiment, a timing reference signal decouples the individual parameters of two interfaces testing each other to avoid any errors introduced by the combination of individual interface circuit parameters, such as receiver parameters and transmitter parameters. The testing can be performed at the wafer stage, at the component stage, and in a system.
Abstract:
A system and method for measurement are disclosed which may include providing an input command signal; convolving the input command signal with a plurality of impulse signals to produce a transducer drive signal; and activating a first pressure transducer with the drive signal to transmit a pressure wave output from the transducer.
Abstract:
A system and method for measurement are disclosed which may include providing an input command signal; convolving the input command signal with a plurality of impulse signals to produce a transducer drive signal; and activating a first pressure transducer with the drive signal to transmit a pressure wave output from the transducer.
Abstract:
A method and apparatus for testing and characterizing circuits is provided. In one embodiment, a high-speed interface of a semiconductor component includes high-speed test circuitry. The high-speed test circuitry obviates the need for an external high-speed testing system for testing and characterization. In one embodiment, the high-speed test circuitry includes a test pattern generation circuit, and various differential comparators to compare low bandwidth reference signals with interface signals during testing and characterization. In one embodiment, an interface that includes the test circuitry can test itself or another interface. In one embodiment, a timing reference signal decouples the individual parameters of two interfaces testing each other to avoid any errors introduced by the combination of individual interface circuit parameters, such as receiver parameters and transmitter parameters. The testing can be performed at the wafer stage, at the component stage, and in a system.
Abstract:
A lithography challenge for large heterogeneous integration of integrated circuit devices is the limited size of the exposure field (typically 60 mm x 60 mm or smaller) for most currently available lithography systems, Smaller-field systems can be used to pattern large substrates (e.g., panels) by stitching together multiple exposure fields. However, the stitching of exposure fields affects both productivity and yield because of the need for multiple exposures, which includes multiple reticles, and a risk of alignment errors at the stitching boundaries, A large-exposure field eliminates these problems associated with smaller exposure fields. However, there are also challenges associated with a large-exposure field, such as exposing onto a possibly warped or distorted panel. Various examples disclosed herein include a post-overlay compensation method that use an overlay-model prior to exposing the panel to reduce or eliminate errors due to the warped, or distorted panel. Other methods and systems are also disclosed.
Abstract:
Methods of sustainable wastewater and biosolids treatment using a bioreactor including a microbial fuel cell are disclosed. In some embodiments, the methods include the following: enriching an anode of the microbial fuel cell in the bioreactor with a substantially soluble electron acceptor; growing the bacteria in the presence of the anode enriched with a substantially soluble electron acceptor; oxidizing a substrate using the bacteria to produce free electrons; channeling the free electrons away from a terminal electron acceptor and to the enriched anode, the enriched anode serving as an electron acceptor; and carrying the free electrons from the enriched anode to a cathode of the microbial fuel cell to generate electricity.
Abstract:
Techniques for the delivery of metered amounts of liquid material include the use of a pin (3), such as an optical fiber. A sample of the liquid material may be placed on the tip (7A) of the pin for delivery to a target area, such as a specific location on a microarray, in a contactless manner. Light transmitted through the pin may be detected to facilitate accurate measuring of the pin's position.