Abstract:
Electrically active, cathodically coloring electrochromic polymers are blended with a non-electrochromic, non-electrically conductive binder polymer to provide an electrochomic composition with greatly enhanced performance in an electrochromic device over time. It is also found that blending an electrochromic polymer with a non-coloring electroactive material allows for greater design in preparing electrochromic devices as it enables the use of a higher amount of typically low coloring anodic materials due to increased need for charge balancing.
Abstract:
Photo-curable coating formulations which comprise a durable and/or red-shifted reactable hydroxyphenylbenzotriazole ultraviolet light absorber (UVA) are effectively photocured employing a combination of α-hydroxy ketone and bisacylphosphine oxide photoinitiators. The reactable UVA's are reacted into the coating upon curing. The combination of the photoinitiators bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide and 1-hydroxycyclohexylphenylketone is especially effective for this purpose.
Abstract:
Electrically active, cathodically coloring electrochromic polymers are blended with a non-electrochromic, non-electrically conductive binder polymer to provide an electrochomic composition with greatly enhanced performance in an electrochromic device over time. It is also found that blending an electrochromic polymer with a non-coloring electroactive material allows for greater design in preparing electrochromic devices as it enables the use of a higher amount of typically low coloring anodic materials due to increased need for charge balancing.
Abstract:
Disclosed are compositions, which are stabilized against degradation and yellowing during exposure to ultraviolet light by the presence of certain hindered amine additives, a method of stabilizing the compositions by the addition of said additives, to the use of such compositions as media in electroactive devices such as electrochromic and electrophoteric devices, and the electroactive devices comprised of these media.
Abstract:
This invention is a method for incorporating additives into a polymeric materials such as coatings and plastics, which comprises treating the polymeric material with light prior to applying a removable coating of a composition comprising the additives to the surface of the polymeric material and allowing the coating to remain in contact with the polymeric material for a time sufficient to allow the additives to diffuse into the polymeric material.
Abstract:
Method for incorporating light stabilizers into a polymeric material such as coatings, paints and plastics, which comprises the steps of providing a coating of a composition comprising a light stabilizer on the polymeric material and allowing the coating to remain in contact with the polymeric material for a time sufficient to cause the light stabilizer to diffuse into the polymeric material. No active heating of the polymeric substrate is required. Ambient conditions encountered in natural outdoor weathering will suffice to allow diffusion of stabilizers. Other additives affecting the aging of the polymeric material can also be incorporated by this method.
Abstract:
Photo-cureable coating formulations which comprise a durable and/or red-shifted hydroxyphenylbenzotriazole ultraviolet light absorber (UVA) are effectively photocured employing a combination of α-hydroxy ketone and bisacylphosphine oxide photoinitiators. The combination of the photoinitiators bis(2,4,6-trymethylbenzoyl)phenylphosphine oxide and 1-hydroxycyclohexylphenylketone is especially effective for this purpose.
Abstract:
This application is directed to compositions of particular combinations of antimicrobial components which may be incorporated into a polymeric molding compositions or polymeric coating compositions. The antimicrobial components include a alkylaminoalkyl(meth)acrylate polymer (b) and antimicrobial metal (a) containing components which lead to improved antimicrobial effects. The compositions are of special interest to durable touch surfaces found in hospitals and clinics. The compositions are also suitable for use in biomaterials such as catheters and the like.
Abstract:
Blending an electrically active, anodically coloring, electrochromic polymer with a non-electrochromic, non-electrically conductive binder polymer greatly enhances the performance of the anodically coloring, electrochromic polymer in an electrochromic device over time. In addition to improved physical characteristics of the blend, e.g., film build, durability etc, the coloristic properties, including color space and color strength, of the device comprising the blend are more durable than when using the neat polymer, and in certain instances, the color space and color intensity provided by the blend is superior to that available from the neat polymer.
Abstract:
Disclosed are compositions, which are stabilized against degradation and yellowing during exposure to ultraviolet light by the presence of certain nitroxyl, hydroxyl amine and hydroxyl amine salt additives, a method of stabilizing the compositions by the addition of said additives, to the use of such compositions as media in electroactive devices such as electrochromic and electrophoteric devices, and the electroactive devices comprised of these media.