Abstract:
In a method of preparing and using an aperture mask, a temperature of an aperture mask is increased to a first, mounting temperature (T1), whereupon the size of the aperture mask increases according to its coefficient of thermal expansion (CTEam), until at least one dimension thereof is of a first desired extent. The temperature of a frame is also increased to T1, whereupon the size of the frame grows according to its coefficient of thermal expansion (CTEf), which is lower than CTEam. The aperture mask is fixedly mounted to the frame at T1. The frame mounted aperture mask is then used for depositing a material on a substrate at a deposition temperature T2 that is less than T1, whereupon the frame holds the shadow mask in tension with the one dimension at a second desired extent.
Abstract:
The present invention is a multi-layer shadow mask and method of use thereof. The multi-layer shadow mask includes a sacrificial mask bonded to a deposition mask. The sacrificial mask provides protection against an accumulation of evaporant on the deposition mask which would cause the deposition mask to deform.
Abstract:
In a method of preparing and using an aperture mask, a temperature of an aperture mask is increased to a first, mounting temperature (T1), whereupon the size of the aperture mask increases according to its coefficient of thermal expansion (CTEam), until at least one dimension thereof is of a first desired extent. The temperature of a frame is also increased to T1, whereupon the size of the frame grows according to its coefficient of thermal expansion (CTEf), which is lower than CTEam. The aperture mask is fixedly mounted to the frame at T1. The frame mounted aperture mask is then used for depositing a material on a substrate at a deposition temperature T2 that is less than T1, whereupon the frame holds the shadow mask in tension with the one dimension at a second desired extent.
Abstract:
Via holes are formed in a continuous inline shadow mask production system by depositing a first conductor layer and subsequently depositing a first insulator layer over a portion of the first conductor layer. The first insulator layer is deposited in a manner to define at least one notch along its edge. The second insulator layer is then deposited on another portion of the first conductor layer in a manner whereupon the second insulator layer slightly overlaps each notch of the first insulator layer, thereby forming the one or more via holes. A conductive filler can optionally be deposited in each via hole. Lastly, a second conductive layer can be deposited over the first insulator layer, the second insulator layer and, if provided, the conductive filler.
Abstract:
The present invention is a substrate holder system for and method of providing a substrate-to-mask alignment mechanism, securing mechanism and temperature control mechanism. The substrate holder system is suitable for use in an automated shadow mask vacuum deposition process. The substrate holder system includes a system controller, and a substrate arranged between a magnetic chuck assembly and a mask holder assembly. The magnetic chuck assembly includes a magnetic chuck, a thermoelectric device, a plurality of thermal sensors and a plurality of light sources. The mask holder assembly includes a shadow mask, a mask holder, a motion control system and a plurality of cameras. The substrate holder system of the present invention provides close contact between the substrate and the shadow mask thereby avoiding the possibility of evaporant material entering into a gap therebetween.
Abstract:
Via holes are formed in a continuous inline shadow mask production system by depositing a first conductor layer and subsequently depositing a first insulator layer over a portion of the first conductor layer. The first insulator layer is deposited in a manner to define at least one notch along its edge. The second insulator layer is then deposited on another portion of the first conductor layer in a manner whereupon the second insulator layer slightly overlaps each notch of the first insulator layer, thereby forming the one or more via holes. A conductive filler can optionally be deposited in each via hole. Lastly, a second conductive layer can be deposited over the first insulator layer, the second insulator layer and, if provided, the conductive filler.
Abstract:
The present invention is a multi-layer shadow mask and method of use thereof. The multi-layer shadow mask includes a sacrificial mask bonded to a deposition mask. The sacrificial mask provides protection against an accumulation of evaporant on the deposition mask which would cause the deposition mask to deform.
Abstract:
The present invention is a substrate holder system for and method of providing a substrate-to-mask alignment mechanism, securing mechanism and temperature control mechanism. The substrate holder system is suitable for use in an automated shadow mask vacuum deposition process. The substrate holder system includes a system controller, and a substrate arranged between a magnetic chuck assembly and a mask holder assembly. The magnetic chuck assembly includes a magnetic chuck, a thermoelectric device, a plurality of thermal sensors and a plurality of light sources. The mask holder assembly includes a shadow mask, a mask holder, a motion control system and a plurality of cameras. The substrate holder system of the present invention provides close contact between the substrate and the shadow mask thereby avoiding the possibility of evaporant material entering into a gap therebetween.