Abstract:
A display system is disclosed that is capable of switching between graphics processing units (GPUs). Some embodiments may include a display system, including a display, a timing controller (T-CON) coupled to the display, the T-CON including a plurality of receivers, and a plurality of GPUs, where each GPU is coupled to at least one of the plurality of receivers, and where the T-CON selectively couples only one of the plurality of GPUs to the display at a time.
Abstract:
A device such as a multicolor light emitting diode that emits different colors of light and that may combine the different colors emitted by individual light emitting diodes. The multicolor LED may include a common anode terminal that may be connected to each anode of the individual light emitting diodes. The multicolor LED may be a five terminal multicolor LED. Additionally, the multicolor LED may include two anode terminals, in which the first anode terminal may be a common anode terminal connected to three of the individual color LEDs and the second anode terminal may be connected to an anode of a white LED. In this embodiment, the multicolor LED may be a six terminal multicolor LED.
Abstract:
A thermal manager has a digital filter whose input is to receive raw temperature values from a sensor and whose output is to provide processed or filtered temperature values according to a filter function that correlates temperature at the sensor with temperature at another location in the device. The thermal manager has a look-up table that further correlates temperature at the sensor with temperature at said another location. The look-up table contains a list of processed temperature sensor values, and/or a list of temperatures representing the temperature at said another location, and their respective power consumption change commands. The thermal manager accesses the look-up table using selected, filtered temperature values, to identify their respective power consumption change commands. The latter are then evaluated and may be applied, to mitigate a thermal at said another location. Other embodiments are also described and claimed.
Abstract:
One embodiment of the present invention provides a system that switches between frame buffers which are used to refresh a display. During operation, the system refreshes the display from a first frame buffer which is located in a first memory. Upon receiving a request to switch frame buffers for the display, the system reconfigures data transfers to the display so that the display is refreshed from a second frame buffer which is located in a second memory.
Abstract:
Apparatuses and methods to operate a display device of an electronic device. In some embodiments, a method includes receiving a user setting of a display control parameter, and altering, based on the user setting, an effect of an ambient light sensor value (ALS) on control of the display control parameter. Also, according to embodiments of the inventions, a method of operating a display of an electronic device includes receiving a change to one of a display brightness output level and an ambient light sensor output level, and altering, according to the change, a display contrast output level. In some embodiments, a method of operating a proximity sensor of an electronic device includes receiving a light sensor output, and altering, according to the output, an on/off setting of a proximity sensor. Other apparatuses and methods and data processing systems and machine readable media are also described.
Abstract:
Various embodiments of a wirelessly powered local computing environment are described. The wireless powered local computing environment includes at least a near field magnetic resonance (NFMR) power supply arranged to wirelessly provide power to any of a number of suitably configured devices. In the described embodiments, the devices arranged to receive power wirelessly from the NFMR power supply must be located in a region known as the near field that extends no further than a distance D of a few times a characteristic size of the NFMR power supply transmission device. Typically, the distance D can be on the order of 1 meter or so.
Abstract:
A display system is disclosed that is capable of switching between graphics processing units (GPUs). Some embodiments may include a display system, including a display, a timing controller (T-CON) coupled to the display, the T-CON including a plurality of receivers, and a plurality of GPUs, where each GPU is coupled to at least one of the plurality of receivers, and where the T-CON selectively couples only one of the plurality of GPUs to the display at a time.
Abstract:
One embodiment of the present invention provides a system that switches from a first graphics processor to a second graphics processor to drive a display. During operation, the system receives a request to switch a signal source which drives the display from the first graphics processor to the second graphics processor. In response to the request, the system first configures the second graphics processor so that the second graphics processor is ready to drive the display. Next, the system switches the signal source that drives the display from the first graphics processor to the second graphics processor, thereby causing the second graphics processor to drive the display.
Abstract:
A computer readable medium containing program instructions for controlling a parametric equalizer is provided. Generally, a computer readable code is provided for displaying a composite equalization curve, wherein the composite equalization curve is formed from at least a first frequency filter with a first center frequency, a second frequency filter with a second center frequency, and a third frequency filter with a third center frequency. A computer readable code is provided for allowing a dragging movement of the first center frequency, the second center frequency, and the third center frequency.
Abstract:
A computer readable medium for compressing video data with an edit track is provided. Generally, computer readable code for compressing video data is provided. The computer readable code for compressing comprises computer readable code for accessing the edit track to use data in the edit track during the compressing. A method of compressing video data with an edit track is provided. Generally, video data is compressed. The compressing comprises accessing the edit track to use data in the edit track during the compressing. A system for compressing video data is also provided. An edit track reader for accesses data within the edit track and generates instructions based on the data within the data track. A video compressor receives instruction from the edit track reader and receives the edited video track and audio track, and compresses the edited video according to the instructions from the edit track reader.