Abstract:
A passive implantable medical device for controlling a flow of fluid through a tube within a patient includes a first component and a second component movably coupled to one another and defining a central passage configured for receiving a portion of the tube therethrough. The passive implantable medical device is configured for moving between a first configuration and a second configuration to constrict a portion of the tube. An active implantable medical device for controlling a flow of a first fluid through a tubing includes a flow control cuff comprising a stiff outer wall and a deformable inner wall which defines a central opening sized such that the tubing can extend therethrough. A pump is configured to modulate a pressure of the second fluid within the interior space to apply a constrictive force to a section of the tubing.
Abstract:
A transcatheter prosthetic heart valve includes a stent frame and at least one sheet of leaflet material formed in to a tube, which includes a lower portion disposed on an exterior of the stent frame and an upper edge portion disposed within the stent frame. The upper edge portion includes at least a portion configured to wrap around a first portion of the top edge of the stent frame and fold towards an exterior of the stent frame. The upper edge portion also includes at least another portion configured to weave through the stent frame and fold towards the interior of the stent frame.
Abstract:
A transcatheter prosthetic heart valve includes a stent frame and at least one sheet of leaflet material formed in to a tube, which includes a lower portion disposed on an exterior of the stent frame and an upper edge portion disposed within the stent frame. The upper edge portion includes at least a portion configured to wrap around a first portion of the top edge of the stent frame and fold towards an exterior of the stent frame. The upper edge portion also includes at least another portion configured to weave through the stent frame and fold towards the interior of the stent frame.
Abstract:
A prosthetic heart valve includes a first upper frame portion and a stent frame connected to the first upper frame portion via at least two stent frame extensions. The stent frame includes a base and at least two stent posts extending upwardly from the base towards the first upper frame portion. The first upper frame portion, the base, and the at least two stent posts each has an inner surface and an outer surface. The prosthetic heart valve also includes at least one sheet of leaflet material configured to encircle the stent frame and weave through the stent frame between the first upper frame portion and the base.
Abstract:
A prosthetic heart valve includes a first upper frame portion and a stent frame connected to the first upper frame portion via at least two stent frame extensions. The stent frame includes a base and at least two stent posts extending upwardly from the base towards the first upper frame portion. The first upper frame portion, the base, and the at least two stent posts each has an inner surface and an outer surface. The prosthetic heart valve also includes at least one sheet of leaflet material configured to encircle the stent frame and weave through the stent frame between the first upper frame portion and the base.
Abstract:
A novel system and method for fluid management for accurate continuous venovenous hemofiltration (CWH) in extracorporeal membrane oxygenation (ECMO). The fluid management or CWH system is automated and configured for operation as a stand alone unit and can be easily integrated with an ECMO system. The fluid management system is capable of producing either perfect or negative fluid balance between ultrafiltrate removal and replacement fluid delivery. The fluid management system can achieve electrolyte replacement over a range of flow rates needed to care for patients ranging from neonates to adults. Finally, the novel fluid management system preserves patient safety, maintains sterility during operation, is easy to operate, and is compact enough to fit near a patient's bed.
Abstract:
A novel system and method for fluid management for accurate continuous venovenous hemofiltration (CWH) in extracorporeal membrane oxygenation (ECMO). The fluid management or CWH system is automated and configured for operation as a stand alone unit and can be easily integrated with an ECMO system. The fluid management system is capable of producing either perfect or negative fluid balance between ultrafiltrate removal and replacement fluid delivery. The fluid management system can achieve electrolyte replacement over a range of flow rates needed to care for patients ranging from neonates to adults. Finally, the novel fluid management system preserves patient safety, maintains sterility during operation, is easy to operate, and is compact enough to fit near a patient's bed.
Abstract:
A device for use in the total cavopulmonary connection (TCPC) in order to optimize its hemodynamics. Although the current procedure of choice for single ventricle heart repairs, the TCPC has reduced the post-operative mortality to the level of simpler types of congenital heart disease repairs, Fontan patients are still subjected to serious long-term complications. The TCPC procedure, which restores the vital separation between oxygenated and deoxygenated blood, also leads to an increased workload for the remaining single ventricle, as it is now responsible for pumping the blood through both the systemic and pulmonary circulation. The present device reduces this workload by altering the surgically created design of the TCPC. Improved fluid mechanics and reduced energy dissipation at the connection site translates into less work for the single ventricle and improved transport of deoxygenated blood to the lungs, which may in turn contribute to improved post-operative results and quality of life.
Abstract:
A device for use in the total cavopulmonary connection (TCPC) in order to optimize its hemodynamics. Although the current procedure of choice for single ventricle heart repairs, the TCPC has reduced the post-operative mortality to the level of simpler types of congenital heart disease repairs, Fontan patients are still subjected to serious long-term complications. The TCPC procedure, which restores the vital separation between oxygenated and deoxygenated blood, also leads to an increased workload for the remaining single ventricle, as it is now responsible for pumping the blood through both the systemic and pulmonary circulation. The present device reduces this workload by altering the surgically created design of the TCPC. Improved fluid mechanics and reduced energy dissipation at the connection site translates into less work for the single ventricle and improved transport of deoxygenated blood to the lungs, which may in turn contribute to improved post-operative results and quality of life.