Abstract:
The invention provides a method for the purification of a liquid by membrane distillation comprising: passing a heated vapourising stream of a liquid (retentate stream) through a retentate channel along a porous hydrophobic membrane (10), whereby vapour of the liquid flows via the pores of the membrane to the other side of said membrane, and condensing said vapour on the other side of said membrane to give a distillate stream in a distillate channel (5) which distillate is created by passing the heat of condensation (latent heat) towards a condenser surface (3), said condenser surface forming a non-porous separation between a feed stream of the liquid to be purified and said distillate stream, which feed stream is passed through a feed channel (2) in counter-current with the retentate stream, in which feed channel a space material (4) is arranged whereby at least part of the latent heat is transferred via the condenser surface to the feed stream, and whereby a positive liquid pressure difference is applied between the retentate stream and the feed stream at the corresponding points of the retentate channel and the feed channel over at least a part of each of the retentate channel (9) and feed channel. The invention further provides an apparatus suitable for use in said method.
Abstract:
It is described a method for providing an electronic key within an integrated circuit (100) including both a volatile memory (102) and a non-volatile memory (104). The described comprises starting up the integrated circuit (100), reading the logical state of predetermined data storage cells (102a) assigned to the volatile memory (102), which data storage cells (102a) are characterized that with a plurality of start up procedures they respectively adopt the same logical state, and generating an electronic key by using the logical state of the predetermined data storage cells (102a). Preferably, the predetermined data storage cells (102a) are randomly distributed within the volatile memory (102). It is further described an integrated circuit (100) for providing an electronic key. The integrated circuit (100) comprises a volatile memory (102) comprising predetermined data storage cells (102a), which are characterized that with a plurality of start up procedures they respectively adopt the same logical state, and a non-volatile memory (104) having information stored upon regarding the predetermined data storage cells (102a). Thereby, the electronic key is defined by the corresponding logical states of the predetermined data storage cells (102a).
Abstract:
A system (100) comprising a plurality of interconnected devices (101-105) and being arranged to provide the devices (101-105) conditional access to protected content items, characterized in that the system (100) is arranged to restrict the number of simultaneous sessions involving said protected content items to a predetermined total limit. Preferably the system (100) restricts the number of content items that can be accessed simultaneously to the predetermined limit. Security modules (300) such as smart cards can be used for this purpose. Each security module (300) may be arranged to restrict the number of content items to which it provides access simultaneously to an individual limit, which can change over time. The system restricts the sum of the individual limits to the predetermined total limit. If the limit is reached, further sessions may be refused or allowed at reduced quality level.
Abstract:
Transponder (180) having stored a fixed identification number, which expands said identification number with a random number, encrypts said expanded number with a key, and sends it to a reader (160) on its request. Reader (160), which on request receives an encrypted number from a transponder (180), decrypts a received encrypted number with a key, which was also used by the transponder (180), and extracts a fixed identification number associated with the transponder (180).
Abstract:
Reader (420) for determining the validity of a connection to a transponder (440), designed to measure a response time of a transponder (440) and to authenticate the transponder (440) in two separate steps. Transponder (440) for determining the validity of a connection to a reader (420), wherein the transponder (440) is designed to provide information for response time measurement to said reader (420) and to provide information for authentication to said reader (420) in two separate steps, wherein at least a part of data used for the authentication is included in a communication message transmitted between the reader (420) and the transponder (440) during the measuring of the response time.
Abstract:
The invention provides a method for the purification of a liquid by membrane distillation comprising: passing a heated vapourising stream of a liquid (retentate stream) through a retentate channel along a porous hydrophobic membrane (10), whereby vapour of the liquid flows via the pores of the membrane to the other side of said membrane, and condensing said vapour on the other side of said membrane to give a distillate stream in a distillate channel (5) which distillate is created by passing the heat of condensation (latent heat) towards a condenser surface (3), said condenser surface forming a non-porous separation between a feed stream of the liquid to be purified and said distillate stream, which feed stream is passed through a feed channel (2) in counter-current with the retentate stream, in which feed channel a space material (4) is arranged whereby at least part of the latent heat is transferred via the condenser surface to the feed stream, and whereby a positive liquid pressure difference is applied between the retentate stream and the feed stream at the corresponding points of the retentate channel and the feed channel over at least a part of each of the retentate channel (9) and feed channel. The invention further provides an apparatus suitable for use in said method.
Abstract:
A method is described, wherein signals are transmitted in a transmission frequency band by a primary station through a network to one or more secondary stations each having a reception frequency band. At least a part of the transmission frequency band is reserved for unicast transmission to the secondary station, which part is mapped onto the reception frequency band of the secondary station. Unicast transmission concerns the transmission to one subscriber or even one device, of one or more signals over the network, upon a request made by the secondary station. Because the unicast part thus suitably mapped may contain for example requested signals, a program or a program group the total transmission capacity to the subscribers has increased without requiring substantial financial investments in network infrastructure.
Abstract:
Transponder (180) having stored a fixed identification number, which expands said identification number with a random number, encrypts said expanded number with a key, and sends it to a reader (160) on its request. Reader (160), which on request receives an encrypted number from a transponder (180), decrypts a received encrypted number with a key, which was also used by the transponder (180), and extracts a fixed identification number associated with the transponder (180).
Abstract:
Transponder (104), comprising a storage unit (106) having stored a number of different applications, a processing unit (108) which, on request of a reader (102), is adapted to generate a response interpretable using an encryption scheme known by both the transponder (104) and the reader (102) so that the reader (102) is capable of determining whether an application is supported by the transponder (104) by analyzing the response using the encryption scheme, and a transmission unit (110) adapted to send the response to said reader (102).
Abstract:
It is described a method for providing an electronic key within an integrated circuit (100) including both a volatile memory (102) and a non-volatile memory (104). The described comprises starting up the integrated circuit (100), reading the logical state of predetermined data storage cells (102a) assigned to the volatile memory (102), which data storage cells (102a) are characterized that with a plurality of start up procedures they respectively adopt the same logical state, and generating an electronic key by using the logical state of the predetermined data storage cells (102a). Preferably, the predetermined data storage cells (102a) are randomly distributed within the volatile memory (102). It is further described an integrated circuit (100) for providing an electronic key. The integrated circuit (100) comprises a volatile memory (102) comprising predetermined data storage cells (102a), which are characterized that with a plurality of start up procedures they respectively adopt the same logical state, and a non-volatile memory (104) having information stored upon regarding the predetermined data storage cells (102a). Thereby, the electronic key is defined by the corresponding logical states of the predetermined data storage cells (102a).