Abstract:
Systems and methods for integrating bandwidth management (BWM) equipment into a network in order to manage the use of bandwidth over multiple radio access technologies (RATs) relating to communications between a wireless transmit receive unit and a mobile core network (MCN). When integrating itself into the network, a BWM server may be placed between a MCN and an femto access point. In order for WTRUs to communicate with the MCN through the femto acces point and a BWM server, a BWM server may need deep packet inspection capabilities.
Abstract:
Methods and apparatuses are described herein for sending and receiving messages using a low latency messaging service, referred to herein as a 5GMSG service, which resides in the 5G core network (5GC). In accordance with one embodiment, an apparatus may send, to a second apparatus, a first message comprising a first identifier for a third apparatus to enable the third apparatus to receive the first message. The apparatus may receive, from the second apparatus, a second message comprising a second identifier of the third apparatus. The apparatus may send, to the third apparatus, a third message comprising the second identifier. The first identifier may comprise an external public identifier of the third apparatus. The second identifier may comprise a 5G Globally Unique Temporary Identifier, a 5G Temporary Mobile Subscriber Identity (5G- TMSI), or a hashed version of a 5G-TMSI. The apparatus may receive notifications indicating that the second identifier changed.
Abstract:
A device and method for registering devices on advanced networks as well as providing operative communications between a legacy device and a advanced network. The legacy device may contain data, such as sensor data, which is being collected on a network outside the communication range/abilities of the legacy device. An intermediary device may receive the data via a first communication scheme and send the device to a server collecting the data via a second communication scheme.
Abstract:
A device and method for registering devices on advanced networks as well as providing operative communications between a legacy device and a advanced network. The legacy device may contain data, such as sensor data, which is being collected on a network outside the communication range/abilities of the legacy device. An intermediary device may receive the data via a first communication scheme and send the device to a server collecting the data via a second communication scheme.
Abstract:
Systems, methods, and instrumentalities are disclosed that may provide assistance across networks using different radio access technologies. A centralized gateway CGW (210, 710) may be provided to facilitate the assistance via client devices in the networks (220). The CGW (210, 710) and client devices may use a common protocol (311) and common interface to take actions relating to the assistance (780).
Abstract:
The implementation of Local IP Access (LIPA), "Extended" LIPA (ELIPA), and Selected IP Traffic Offload (SIPTO) for the design of a "Converged Gateway" (CGW) are disclosed. The gateway system may provide various features such as femtocell access to local networks, public Internet, and private service provider networks.
Abstract:
Systems and methods for integrating bandwidth management (BWM) equipment into a network in order to manage the use of bandwidth over multiple radio access technologies (RATs) relating to communications between a wireless transmit receive unit and a mobile core network (MCN). When integrating itself into the network, a BWM server may be placed between a MCN and an femto access point. In order for WTRUs to communicate with the MCN through the femto acces point and a BWM server, a BWM server may need deep packet inspection capabilities.
Abstract:
Systems, methods, and instrumentalities are disclosed to propagate announcement and de-announcement of a resource across one or more networks. A first entity, which may be a hosting service capability layer (SCL), may receive a request from an issuer to announce a resource. The first entity may create a representation of the resource. The representation may be referred to as an announced resource. The first entity may send an announce resource request to a second entity (e.g., an announced-to SCL), which may be registered with the first entity. The announce resource request may be sent over an mid interface. The first entity may receive a first response from the second entity over the mid interface indicating that the second entity created the announced resource.
Abstract:
An M2M Server may be integrated into a 3 GPP network. A network node, for example a Serving General Packet Radio Service (GPRS) Support Node (SGSN) may include a dedicated interface with a M2M server. The interface may be called a GM2M interface. The interface may be a logical interface internal to the network node. The node may receive subscriber data and control data, wherein the control data facilitates a network control procedure and the subscriber data identifies a device involved in the network control procedure. The node may determine that the device involved in the network control procedure is a machine to machine device based on the subscriber data. The node may also send the control data to a machine to machine server using a message sent via a dedicated interface with the machine to machine server.
Abstract:
A device and method for registering devices on advanced networks as well as providing operative communications between a legacy device and a advanced network. The legacy device may contain data, such as sensor data, which is being collected on a network outside the communication range/abilities of the legacy device. An intermediary device may receive the data via a first communication scheme and send the device to a server collecting the data via a second communication scheme.