Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
Abstract:
The invention provides a multi-band antenna structure for use in a wireless communication system. The antenna structure includes integrated inductive elements and capacitive elements that function as a tuned circuit to allow the antenna structure to operate in multiple frequency ranges. In particular, the capacitive elements electromagnetically couple to the inductive elements. The capacitive elements provide the inductive elements with parallel capacitance at a given set of frequencies, thereby providing the antenna structure with frequency selectivity. At a particular frequency range, the inductive elements act as short circuits, thereby lengthening the radiating elements, which radiate energy at the particular frequency. At another frequency range, the inductive components act as open circuits, virtually shortening the radiating elements in order to radiate the higher frequencies. In this manner, the multi-band antenna structure operates within multiple frequency ranges.
Abstract:
The invention provides a multi-band antenna structure for use in a wireless communication system. The antenna structure includes integrated inductive elements and capacitive elements that function as a tuned circuit to allow the antenna structure to operate in multiple frequency ranges. In particular, the capacitive elements electromagnetically couple to the inductive elements. The capacitive elements provide the inductive elements with parallel capacitance at a given set of frequencies, thereby providing the antenna structure with frequency selectivity. At a particular frequency range, the inductive elements act as short circuits, thereby lengthening the radiating elements, which radiate energy at the particular frequency. At another frequency range, the inductive components act as open circuits, virtually shortening the radiating elements in order to radiate the higher frequencies. In this manner, the multi-band antenna structure operates within multiple frequency ranges.
Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
Abstract:
In general, this disclosure is directed to techniques for remotely controlling a transmitter-side rate adaptation algorithm. According to one aspect, a method includes detecting, with a receiver device, that a packet received from a transmitter is corrupted. The method further includes sending, with the receiver device, a positive acknowledgement for the packet to the transmitter in response to at least detecting that the packet is corrupted. According to another aspect, a method includes determining, with a receiver device, a targeted outcome for a rate adaptation algorithm performed by a transmitter. The method further includes using, with the receiver device, positive acknowledgements to remotely control the rate adaptation algorithm performed by the transmitter based on at least the targeted outcome.
Abstract:
The invention provides a receiver for use in a wireless communication system that substantially reduces mismatch between an in-phase (I) component and a quadrature (Q) component of a received signal. The receiver achieves this by sharing or "ping-ponging" an analog-to-digital converter (ADC) between the I and Q components. By sharing a single pipelined ADC between the I and Q components, both the I and Q components are processed by the same circuitry inside the pipelined ADC thereby eliminating many dominant sources of I-Q mismatch. The pipelined ADC operates at approximately twice the speed as other circuit components. Consequently, I-Q mismatch, which negatively affects performance, may be substantially reduced. At the same time, system complexity, cost, and power dissipation are reduced by eliminating an additional ADC typically used to process the I and Q components in parallel signal paths.
Abstract:
A data reception system and technique are disclosed. The system includes a modem (18) for receiving transmitted data including inherent redundant data and for providing received data and information regarding the received data and error recovery apparatus (22) operating on the received data for utilizing the inherent redundant data and the information regarding the received data to identify and to correct errors introduced into the received data. The technique includes the steps of receiving the transmitted data including inherent redundant data, providing received data and information regarding the received data, identifying a plurality of suspected erroneous datapoints in the received data and checking that the inherent redundant data is consistent with the received data. The method then continues by replacing the first value with a second possible value and by repeating the steps of checking and replacing until the received data is consistent with the inherent redundant data.
Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
Abstract:
A speech compression/decompression system and method which do not require special hardware are described. The compression unit represents an input audio signal (19) as a collection of parameters, wherein the parameters are a remnant excitation pulse sequence (27), a set of spectral coefficients (A) and a set of pitch parameters (B & C). The decompression unit utilizes the pitch parameters and remnant excitation pulse sequence to produce a reconstructed excitation signal. The decompression unit also utilizes the spectral coefficients to filter the reconstructed excitation signal into a speech waveform. The compression unit includes a short-term predictor (22), a two-step long-term predictor (24) and a multipulse analyzer (26).