Abstract:
An electric motor has a rotor and a stator. The rotor or the stator has arced permanent magnets that have essentially the same inner radius (IR) and outer radius (OR). In an aspect, the stator has a stator housing having a plurality of poles. Each pole includes a plurality of flat magnets affixed to an inner surface of the stator housing. In an aspect, flats on the outside of the stator housing key the stator assembly in a power tool housing. In an aspect, flat magnets are pre-magnetized, pre-assembled with alternating magnetic polarities, inserted into a stator housing, and remagnetized to a final, desired magnetic polarity configuration. In an aspect, pre-magnetized magnets and unmagnetized magnets are pre-assembled with unmagnetized magnets between magnetized magnets, the pre-assembled magnets inserted into a stator housing, and the unmagnetized magnets magnetized to a final, desired magnetic polarity configuration. In an aspect, pre-magnetized magnets are inserted between anchors inwardly extending from an inner surface of a stator housing with the anchors retaining each magnet placed in the stator housing between anchors from being angularly displaced by subsequently inserted magnets. In an aspect, pre-magnetized magnets are inserted in recesses in an inner surface of a stator housing with the recesses retaining each magnet placed in the stator housing between anchors from being angularly displaced by subsequently inserted magnets. In an aspect, each pole has at least three magnets, at least one of the magnets being thinner than the other magnets. In an aspect, the outer most magnets are made of magnetic material that is more resistant to demagnetization than at least one of the other magnets. In an aspect, the magnets of each pole are unevenly spaced over the pole In an aspect, a power tool includes such an electric motor.
Abstract:
An electric motor, power tool using the electric motor, and method of making the electric motor includes making a stator by separately forming pole pieces, return path pieces and field coils. The field coils are placed over necks of the pole path pieces and the return path pieces are affixed to the pole pieces. An armature having an outside diameter of at least 0.625 the outside diameter of the stator is placed in the stator. In an aspect, the field coils are formed so that they extend beyond pole tips of the pole pieces.
Abstract:
A flux ring for a motor of a power tool has an annular housing which fits inside the motor can of the motor. At least one magnet is on the ring. The at least one magnet includes a portion formed from an isotropic magnetic material and a portion formed from an anisotropic magnetic material. Preferably, the isotropic magnetic materials is sandwiched by the anisotropic magnetic material. The magnets being molded onto the flux ring in a two shot process.
Abstract:
An electric motor has a rotor and a stator. The rotor or the stator has arced permanent magnets that have essentially the same inner radius (IR) and outer radius (OR). In an aspect, the stator has a stator housing having a plurality of poles. Each pole includes a plurality of flat magnets affixed to an inner surface of the stator housing. In an aspect, flats on the outside of the stator housing key the stator assembly in a power tool housing. In an aspect, flat magnets are pre-magnetized, pre-assembled with alternating magnetic polarities, inserted into a stator housing, and remagnetized to a final, desired magnetic polarity configuration. In an aspect, pre-magnetized magnets and unmagnetized magnets are pre-assembled with unmagnetized magnets between magnetized magnets, the pre-assembled magnets inserted into a stator housing, and the unmagnetized magnets magnetized to a final, desired magnetic polarity configuration. In an aspect, pre-magnetized magnets are inserted between anchors inwardly extending from an inner surface of a stator housing with the anchors retaining each magnet placed in the stator housing between anchors from being angularly displaced by subsequently inserted magnets. In an aspect, pre-magnetized magnets are inserted in recesses in an inner surface of a stator housing with the recesses retaining each magnet placed in the stator housing between anchors from being angularly displaced by subsequently inserted magnets. In an aspect, each pole has at least three magnets, at least one of the magnets being thinner than the other magnets. In an aspect, the outer most magnets are made of magnetic material that is more resistant to demagnetization than at least one of the other magnets. In an aspect, the magnets of each pole are unevenly spaced over the pole In an aspect, a power tool includes such an electric motor.
Abstract:
A cordless power tool has a transmission having multiple speed ranges. In the light torque range, the speed of the motor of the cordless power tool is held constant to hold an output speed of the transmission constant until motor power reaches a predetermined percentage of the maximum watts out of the motor.
Abstract:
A power tool has a motor having a stator made by separately forming pole pieces, return path pieces and field coils. The field coils are placed over necks of the pole path pieces and the return path pieces are affixed to the pole pieces. An armature having an outside diameter of at least 0.625 the outside diameter of the stator is placed in the stator. The field coils may be formed so that they extend beyond pole tips of the pole pieces.
Abstract:
A power tool has a motor having a stator made by separately forming pole pieces, return path pieces and field coils. The field coils are placed over necks of the pole path pieces and the return path pieces are affixed to the pole pieces. An armature having an outside diameter of at least 0.625 the outside diameter of the stator is placed in the stator. The field coils may be formed so that they extend beyond pole tips of the pole pieces.
Abstract:
A power tool has a motor with end caps (52,54) secured by cold forming to the motor. The end caps include bearings (56) retained in the end cap by deformation of the end cap. The motor includes an armature shaft (42) which is staked to retain laminates (46) as well as a retainer on the shaft. Also, a pinion gear (60) with a shoulder (78) which limits movement of the shaft in the motor. A fan (108) is on the motor armature (44) which is secured by an adhesive which changes color during assembly. The motor also includes a demagnetization member which increases resistance to demagnetization due to elevated temperature, as well as armature reaction field.
Abstract:
A power tool having an electronically commutated DC motor capable of providing various operating modes ranging from a maximum efficiency operating mode to a maximum power operating mode. The motor has a rotor having permanent magnets mounted in recesses in a back iron of the rotor. In one embodiment the motor has three phase windings, each having at least a pair of coils. The phase windings are connected in either a delta or a wye configuration via electromechancial or electronic switching components, or a combination of both, by a controller within the tool. The coils in each phase winding can also be switched between series and parallel configurations to configure the motor to provide its various operating modes. In one embodiment a dual wound moto is disclosed that has its phase coils dynamically or statically switchable between series and parallel configurations.
Abstract:
A power tool having an electronically commutated DC motor capable of providing various operating modes ranging from a maximum efficiency operating mode to a maximum power operating mode. The motor has a rotor having permanent magnets mounted in recesses in a back iron of the rotor. In one embodiment the motor has three phase windings, each having at least a pair of coils. The phase windings are connected in either a delta or a wye configuration via electromechancial or electronic switching components, or a combination of both, by a controller within the tool. The coils in each phase winding can also be switched between series and parallel configurations to configure the motor to provide its various operating modes. In one embodiment a dual wound motor is disclosed that has its phase coils dynamically or statically switchable between series and parallel configurations.