摘要:
A consumer electronic device hosts a media application that obtains media content use data for a user. The media application interfaces with a server that analyzes the media content use-related data based on a budget-constrained DCLEF and/or a distortion-constrained DCLEF mechanism. The user is then compensated for their disclosed use data based on the severity of the privacy incursion.
摘要:
The present principles focus on the privacy-utility tradeoff encountered by a user who wishes to release some public data (denoted by X) to an analyst, that is correlated with his private data (denoted by S), in the hope of getting some utility. The public data is distorted before its release according to a probabilistic privacy preserving mapping mechanism, which limits information leakage under utility constraints. In particular, this probabilistic privacy mechanism is modeled as a conditional distribution, P_(Y|X), where Y is the actual released data to the analyst. The present principles design utility-aware privacy preserving mapping mechanisms against inference attacks, when only partial, or no, statistical knowledge of the prior distribution, P_(S,X), is available. Specifically, using maximal correlation techniques, the present principles provide a separability result on the information leakage that leads to the design of the privacy preserving mapping.
摘要:
A method for generating a privacy-preserving mapping commences by characterizing an input data set Y with respect to a set of hidden features S. Thereafter, the privacy threat is modeled to create a threat model, which is a minimization of an inference cost gain on the hidden features S. The minimization is then constrained by adding utility constraints to introduce a privacy/accuracy trade-off. The threat model is represented with a metric related to a self-information cost function. Lastly, the metric is optimized to obtain an optimal mapping, in order to provide a mapped output U, which is privacy-preserving.
摘要:
A method and system of recommending content and targeting advertisements for one or more users is provided. The system includes an aggregator that is connected to the one or more users and collects rich user data therefrom. The method includes collecting rich user data from one or more users; building one or more user profiles corresponding to the one or more users; storing the one or more user profiles in a memory database; requesting one or more content profiles from one or more providers; receiving the one or more content profiles; determining whether one of the user profiles is a target user profile for one of the content profiles based on the rich user data associated with the target user profile; and delivering content programs associated with the content profiles to the target user.
摘要:
The present embodiments focus on the privacy-utility tradeoff encountered by a user who wishes to release some public data to an analyst, which is correlated with his private data, in the hope of getting some utility. When multiple data are released to one or more analyst, we design privacy preserving mappings in a decentralized fashion. In particular, each privacy preserving mapping is designed to protect against the inference of private data from each of the released data separately. Decentralization simplifies the design, by breaking one large joint optimization problem with many variables into several smaller optimizations with fewer variables.
摘要:
A methodology to protect private data when a user wishes to publicly release some data about himself, which is can be correlated with his private data. Specifically, the method and apparatus teach comparing public data with survey data having public data and associated private data. A joint probability distribution is performed to predict a private data wherein said prediction has a certain probability. At least one of said public data is altered or deleted in response to said probability exceeding a predetermined threshold.
摘要:
A method and apparatus for ensuring a level of privacy for answering a convolution query on data stored in a database is provided. The method and apparatus includes the activities of determining (402) the level of privacy associated with at least a portion of the data stored in the database and receiving (404) query data, from a querier, for use in performing a convolution over the data stored in the database. The database is searched (406) for data related to the received query data and the data that corresponds to the received query data is retrieved (408) from the database. An amount of noise based on the determined privacy level is generated (410) and added (412) to the retrieved data to create noisy data which is then communicated (414) to the querier.
摘要:
Disclosed are methods and apparatus for identifying users of content. The methods include identifying contextual information of a group of users, gathering user access data of the users on the basis of the contextual information of the group of users, analyzing temporal information of the user access data, and identifying particular users in the group of users on the basis of the analyzed temporal information and the contextual information.
摘要:
The present embodiments focus on the privacy-utility tradeoff encountered by a user who wishes to release some public data (denoted by X) to an analyst, that is correlated with his private data (denoted by S), in the hope of getting some utility. When noise is added as a privacy preserving mechanism, that is, Y=X+N, where Y is the actual released data to the analyst and N is noise, we show that adding Gaussian noise is optimal under l_2-norm distortion for continuous data X. We denote the mechanism of adding Gaussian noise that minimizes the worst-case information leakage by Gaussian mechanism. The parameters for Gaussian mechanism are determined based on the eigenvectors and eigenvalues of the covariance of X. We also develop a probabilistic privacy preserving mapping mechanism for discrete data X, wherein the random discrete noise follows a maximum-entropy distribution.
摘要:
A method comprising receiving an image, the image including associated contextual information; converting the received image into searchable image data, the searchable image data being descriptive of the received image; filtering information from a search database based on the contextual information associated with the received image to create a filtered information set; collecting a plurality of images from the filtered information set to create a seed data set; comparing the received image to the plurality of images from the seed data set using the searchable image data; and determining whether one of the plurality of images is related to the received image.