Abstract:
The optical device includes a waveguide on a base. The device also includes a modulator on the base. The modulator includes an electro-absorption medium configured to receive a light signal from the waveguide. The modulator also includes field sources for generating an electrical field in the electro-absorption medium. The electro-absorption medium is a medium in which the Franz-Keldysh effect occurs in response to the formation of the electrical field in the electro-absorption medium. The field sources are configured so the electrical field is substantially parallel to the base.
Abstract:
A surface plasmon polariton (SPP) pixel structure is provided. The SPP pixel structure includes a coupling structure that couples the probing light into the SPP mode by matching the in-plane wave vector by changing the refractive index of the coupling structure using thermo-optic effects to vary the coupling strength of the probing light into the SPP mode. An absorber layer is positioned on the coupling structure for absorbing incident infrared/thermal radiation being detected.
Abstract:
A method is shown for the extension in higher spatial dimensions of deterministic, aperiodic structures which exhibit strong aperiodic effects and have overall compatibility with the planar technology of integrated optical circuits. Disclosed devices are operative in response to incident electromagnetic energy to create a distribution of electromagnetic energy having localized electromagnetic field enhancement, wherein the device includes a dielectric or plasmonic material having a region of interaction with the incident electromagnetic energy. The region of interaction has a deterministic, aperiodic patterning with an array of individual patterning elements of distinct refractive indices such that a variation of refractive index of the device occurs over distances comparable with a wavelength of the incident electromagnetic energy, the array being a multi-dimensional extension of a corresponding one-dimensional sequence such that a spectral response of the array is a multi-dimensional equivalent of a spectral response of the one-dimensional sequence. Specific examples employing so-called Rodin-Shapiro, Thue-Morse and Fibonacci sequences are shown.
Abstract:
An optical field concentrator includes a plurality of waveguide layers comprising high index materials having a first defined thickness. At least one nano-layer structure is positioned between said waveguide layers. The at least one nano-layer structure comprises low index materials having a second defined thickness that is smaller than the first defined thickness. A plurality of cladding layers are positioned between the waveguide layers and the at least one nano-layer structure. The cladding layers have a third defined thickness that is larger than the first defined thickness.
Abstract:
The optical device includes a waveguide and a light sensor on a base. The light sensor includes a light-absorbing medium configured to receive a light signal from the waveguide. The light sensor also includes field sources for generating an electrical field in the light-absorbing medium. The field sources are configured so the electrical field is substantially parallel to the base.
Abstract:
A surface plasmon polariton (SPP) pixel structure is provided. The SPP pixel structure includes a coupling structure that couples the probing light into the SPP mode by matching the in-plane wave vector by changing the refractive index of the coupling structure using thermo-optic effects to vary the coupling strength of the probing light into the SPP mode. An absorber layer is positioned on the coupling structure for absorbing incident infrared/thermal radiation being detected.
Abstract:
The mode transforming structure includes a first waveguide structure. A slot waveguide region is coupled to the first waveguide structure. The slot waveguide region includes one or more complementary tapered pairs so near lossless transforming between the first waveguide structure and the slot waveguide region occurs so as to allow optical modes to be transferred between the first waveguide and the slot waveguide region.
Abstract:
A method is shown for the extension in higher spatial dimensions of deterministic, aperiodic structures which exhibit strong aperiodic effects and have overall compatibility with the planar technology of integrated optical circuits. Disclosed devices are operative in response to incident electromagnetic energy to create a distribution of electromagnetic energy having localized electromagnetic field enhancement, wherein the device includes a dielectric or plasmonic material having a region of interaction with the incident electromagnetic energy. The region of interaction has a deterministic, aperiodic patterning with an array of individual patterning elements of distinct refractive indices such that a variation of refractive index of the device occurs over distances comparable with a wavelength of the incident electromagnetic energy, the array being a multi-dimensional extension of a corresponding one-dimensional sequence such that a spectral response of the array is a multi-dimensional equivalent of a spectral response of the one-dimensional sequence. Specific examples employing so-called Rodin-Shapiro, Thue-Morse and Fibonacci sequences are shown.
Abstract:
An optical device includes a light-transmitting medium positioned on a base. The light-transmitting medium defines a waveguide. The optical device also includes a light sensor. The light sensor includes a light-absorbing medium positioned on the base. A portion of the waveguide ends at a facet such that a first portion of a light signal being guided by the waveguide passes through the facet and a second portion of the light signal bypasses the facet and remains in the light-transmitting medium. The light-absorbing medium is positioned such that the light-transmitting medium is between the light-absorbing medium and the base. Additionally, the light-absorbing medium is positioned on the light-transmitting medium such that the light-absorbing medium receives the first portion of the light signal that passes through the facet. Further, the light-absorbing medium is configured such that the second portion of the light signal is coupled into the light-absorbing medium.
Abstract:
The ring resonator includes waveguides configured to guide light signals. The waveguides include an input waveguide and one or more loop waveguides. One of the loop waveguides is a primary loop waveguide that is optically coupled with the input waveguide at a wavelength of light. A tuner is configured to tune the wavelength at which the light is optically coupled from the input waveguide into the primary loop waveguide. One or more light detectors are each configured to provide an output indicating an intensity of light guided in one of the one or more loop waveguides. Electronics are configured to tune the tuner in response to the output from the light detector.