Abstract:
La présente invention concerne un procédé et un système de visualisation d'un rayonnement infrarouge émis par une source. Selon l'invention, le système de visualisation comprend un substrat, au moins une couche solide thermosensible comprenant des pigments thermochromes ayant au moins une température de transition T H associée à un changement de couleur apparente, et au moins une couche intermédiaire disposée entre le substrat et la couche solide comprenant des pigments thermochromes; le substrat, ladite au moins une couche intermédiaire et la couche solide thermosensible comprenant des pigments thermochromes formant un empilement adapté pour absorber un rayonnement électromagnétique infrarouge et pour induire une augmentation locale de température dT; et ladite au moins une couche intermédiaire étant adaptée pour transférer par conduction thermique ladite augmentation locale de température dT vers une région de la couche solide thermosensible, de manière à induire un changement local de la couleur apparente de la couche solide thermosensible de pigments thermochromes.
Abstract:
A long wave infrared imaging polarimeter (LWIP) is disclosed including a pixilated polarizing array (PPA) in close proximity to a microbolometer focal plane array (MFPA), along with an alignment engine for aligning and bonding the PPA and MFPA and method for assembly.
Abstract:
Es handelt sich um ein Verfahren zur nichtinvasiven, optischen Bestimmung der Temperatur eines Mediums, vorzugsweise wasserhaltigen Mediums, wobei das zu untersuchende Medium mit infrarotem und/oder sichtbarem Licht im Bereich einer Absorptionslinie beleuchtet wird, deren Lage von der Temperatur des Mediums abhängt und wobei die Absorption des Lichtes im Bereich der Absorptionslinie gemessen und aus dieser Messung durch Vergleich mit Kalibrierungsdaten die Temperatur ermittelt wird. Dieses Verfahren ist dadurch gekennzeichnet, dass das Medium mit zumindest zwei diskreten Lichtwellenlängen beleuchtet wird, welche im Bereich der Absorptionslinie auf unterschiedlichen Seiten des Absorptionsmaximums liegen, dass aus dem Verhältnis dieser beiden ermittelten Absorptionswerte zueinander zumindest ein von der Temperatur abhängiger Messwert bestimmt wird, und dass aus diesem Messwert durch Vergleich mit den zuvor aufgenommenen Kalibrierungsdaten die Temperatur bestimmt wird.
Abstract:
A Device for imaging the local distribution of at least one thermodynamic variable comprises a radiation emitter (17) capable of emitting electromagnetic radiation and a filter (19) for filtering electromagnetic radiation. The emitter (17) and the filter (19) form an arrangement adapted for modifying the electromagnetic radiation emitted by the emitter (17) in dependancy of the local distribution of at least one thermodynamic variable at the location of the arrangement. The emitter further comprises at least one electroluminescent layer (19) and the filter is provided with at least one filter layer (20, 21). The electroluminescent layer (19) and the filter layer (20, 21) are integrated within a cohesive sequence of layers. The device is particularly suitable for infrared camera systems.
Abstract:
A first object of the invention is a radiation detector comprising an energy absorber (203), for absorbing incident radiation (RAD) and thus undergoing a temperature increase; and optical readout means, for detecting said temperature increase; wherein said optical readout means comprises input coupling means (202) for coupling a light beam (2011) to said energy absorber (203) by exciting surface plasmons resonance, a surface plasmons resonance condition being dependent on the energy absorber (203) temperature, and wherein said energy absorber (203) is separated from said input coupling means (202) by a dielectric layer (2032). A second object of the invention is a micromechanical sensor comprising: a micromechanical oscillator and optical readout means (202) for detecting a displacement of said micromechanical oscillator; wherein said optical readout means comprise input coupling means (202) for coupling a light beam (2011) to a conductive surface (2031) by exciting surface plasmons resonance, a surface plasmons resonance condition being dependent on the displacement of said micromechanical oscillator.
Abstract:
Apparatus and methods for measuring the temperature of a substrate are disclosed. The apparatus includes a source of temperature-indicating radiation, a detector for the temperature-indicating radiation, and a decorrelator disposed in an optical path between the source of temperature-indicating radiation and the detector for the temperature-indicating radiation. The decorrelator may be a broadband amplifier and/or a mode scrambler. A broadband amplifier may be a broadband laser, Bragg grating, a fiber Bragg grating, a Raman amplifier, a Brillouin amplifier, or combinations thereof. The decorrelator is selected to emit radiation that is transmitted, at least in part, by the substrate being monitored. The source is matched to the decorrelator such that the emission spectrum of the source is within the gain bandwidth of the decorrelator, if the decorrelator is a gain-driven device.
Abstract:
A surface plasmon polariton (SPP) pixel structure is provided. The SPP pixel structure includes a coupling structure that couples the probing light into the SPP mode by matching the in-plane wave vector by changing the refractive index of the coupling structure using thermo-optic effects to vary the coupling strength of the probing light into the SPP mode. An absorber layer is positioned on the coupling structure for absorbing incident infrared/thermal radiation being detected.