Abstract:
Disclosed are random copoly(phosphonate carbonate)s with the high molecular weight and narrow molecular weight distribution exhibiting a superior combination of properties compared to prior art.
Abstract:
Insoluble polyphosphonates produced via a transesterification process, methods for preparing such insoluble polyphosphonates and polymer compositions and articles of manufacture including such insoluble polyphosphonates are described herein.
Abstract:
Disclosed are random copoly(phosphonate carbonate)s with the high molecular weight and narrow molecular weight distribution exhibiting a superior combination of properties compared to prior art.
Abstract:
Insoluble polyphosphonates produced via a transesterification process, methods for preparing such insoluble polyphosphonates and polymer compositions and articles of manufacture including such insoluble polyphosphonates are described herein.
Abstract:
The invention relates to the use of polyphosphonates, copoly(phosphonate ester)s, copoly(phosphonate carbonate)s, and their respective oligomers, as flame retardant additives for polyester fibers to impart fire resistance while maintaining or improving processing characteristics for melt spinning fibers.
Abstract:
Disclosed are mixtures comprising aqueous thiophene/anion dispersions, such as polythiophene/polystyrene sulfonate aqueous dispersions, and additives, as well as coatings produced therefrom. Coatings produced from these mixtures yield significant improvements in electrical conductivity without the need for a high temperature treatment as compared to coatings produced from unmodified aqueous polythiophene dispersions (e.g., Baytron(R)P) and to coatings produced from state-of the-art aqueous polythiophene-additive mixtures. These conductivity improvements are achieved without detracting from the optical transparency of the coating. Because characteristics of volume resistivity of less than 6.6 ohm-cm and optical transmission greater than 80% are important for conductive coating applications, coatings produced from the mixtures of the present invention have significant advantages over coatings produced from the state-of-the-art mixtures in many applications. Also disclosed are a variety of substrates or articles of manufacture coated with the mixtures of the present invention for use in various applications where a combination of high electrical conductivity, -excellent optical transparency and low temperature processing are important, such as electronic and optoelectronic devices.
Abstract:
The invention relates to the use of polyphosphonates, copoly(phosphonate ester)s, copoly(phosphonate carbonate)s, and their respective oligomers, as flame retardant additives for polyester fibers to impart fire resistance while maintaining or improving processing characteristics for melt spinning fibers.
Abstract:
Disclosed are mixtures comprising aqueous thiophene/anion dispersions, such as polythiophene/polystyrene sulfonate aqueous dispersions, and additives, as well as coatings produced therefrom. Coatings produced from these mixtures yield significant improvements in electrical conductivity without the need for a high temperature treatment as compared to coatings produced from unmodified aqueous polythiophene dispersions (e.g., Baytron®P) and to coatings produced from state-of the-art aqueous polythiophene-additive mixtures. These conductivity improvements are achieved without detracting from the optical transparency of the coating. Because characteristics of volume resistivity of less than 6.6 ohm-cm and optical transmission greater than 80% are important for conductive coating applications, coatings produced from the mixtures of the present invention have significant advantages over coatings produced from the state-of-the-art mixtures in many applications. Also disclosed are a variety of substrates or articles of manufacture coated with the mixtures of the present invention for use in various applications where a combination of high electrical conductivity, -excellent optical transparency and low temperature processing are important, such as electronic and optoelectronic devices.