Abstract:
Compositions and methods for amplifying and detecting solution-state polynucleotide targets in a single device are described. In one aspect, a method for a coupled isothermal amplification and detection process utilizes a coated solid support, including a solid substrate, a cationic layer, and a plurality of target-specific probes attached to the coated solid support. Polynucleotide targets in the sample are amplified by an isothermal amplification process involving in situ hybridization onto the coated solid support. The entire process can be carried out with a high degree of specificity under low salt conditions in less than one hour. Further aspects of the present invention include methods for coupled hybridization/detection of polynucleotide targets, coated silicon biosensors optimized for use with the coupled detection systems to provide visual detection of polynucleotide targets under visible light conditions, and kits for practicing the above described methods.
Abstract:
Methods and materials are disclosed relating to an improved method for amplifying a signal in a diagnostic assay for an analyte, using an amplification polymer that multivalently binds to one or more non-analyte-specific binding site of the multivalent bridge conjugate, if present on the solid support.
Abstract:
Methods and materials are disclosed relating to an improved method for amplifying a signal in a diagnostic assay for a nucleic acid, comprising the steps of providing an amplification polymer bound to a nucleic acid analyte, wherein the amplification polymer comprises a plurality of amine groups; binding amine groups on the amplification polymer with a detectable label complex; and reacting under high salt conditions an acetylating compound with amine groups not bound with a detectable label complex.