Abstract:
Systems and methods are described for detecting the presence and/or absence of a solid, liquid or gas which utilize an RF energy emitter (16) and RF energy detector (18) for determining whether a solid, liquid or gas is present within a defined physical space (12). More specifically, an RF energy emitter (16) is provided at a first side of a solid, liquid or gas transmission channel (12) and an RF energy receiver/detector (18) is provided at an opposite side of the solid liquid or gas fluid channel (12). The RF energy emitter (16) either continuously or periodically emits RF energy which in the preferred exemplary embodiment is in the high-frequency or more preferably ultrahigh frequency signal range. The amount of detected RF energy transferred across the channel (12) is used in determining the presence and/or absence of a solid, liquid or gas.
Abstract:
Systems and methods are described for detecting the presence and/or absence of a solid, liquid or gas which utilize an RF energy emitter and RF energy detector for determining whether a solid, liquid or gas is present within a defined physical space. More specifically, an RF energy emitter is provided at a first side of a solid, liquid or gas transmission channel and an RF energy receiver/detector is provided at an opposite side of the solid liquid or gas fluid channel. The RF energy emitter either continuously or periodically emits RF energy which in the preferred exemplary embodiment is in the high-frequency or more preferably ultrahigh frequency signal range. The amount of detected RF energy transferred across the channel is used in determining the presence and/or absence of a solid, liquid or gas.
Abstract:
A variety of systems and methods are described which quickly and conveniently provide for the selective transmission of individual solid pharmaceutical products from a common location into individual blister package product cavities. In accordance with the preferred exemplary embodiments, an automated alignment mechanism alters the orientation of solid pharmaceutical products that are initially arranged randomly in a two-dimensional array into one or more linear transmission systems (16). Each linear transmission system is essentially a one-dimensional stack of solid pharmaceutical products (12), vitamins or other elements. In accordance with another aspect of the present invention, after the solid pharmaceutical products have been arranged in one or more of the linear transmission systems or vertical stacks, the solid pharmaceutical products are selectively transmitted into individual product package blister cavities or into product package templates having locations corresponding to the blister package cavities.
Abstract:
A variety of systems and methods are described which quickly and conveniently provide for the selective transmission of individual solid pharmaceutical products from a common location into individual blister package product cavities. In accordance with the preferred exemplary embodiments, an automated alignment mechanism alters the orientation of solid pharmaceutical products that are initially arranged randomly in a two-dimensional array into one or more linear transmission systems (16). Each linear transmission system is essentially a one-dimensional stack of solid pharmaceutical products (12), vitamins or other elements. In accordance with another aspect of the present invention, after the solid pharmaceutical products have been arranged in one or more of the linear transmission systems or vertical stacks, the solid pharmaceutical products are selectively transmitted into individual product package blister cavities or into product package templates having locations corresponding to the blister package cavities.
Abstract:
A variety of systems and methods are described which quickly and conveniently provide for the selective transmission of individual solid pharmaceutical products from a common location into individual blister package product cavities. In accordance with the preferred exemplary embodiments, an automated alignment mechanism alters the orientation of solid pharmaceutical products that are initially arranged randomly in a two-dimensional array into one or more linear transmission systems. Each linear transmission system is essentially a one-dimensional stack of solid pharmaceutical products, vitamins or other elements. In accordance with another aspect of the present invention, after the solid pharmaceutical products have been arranged in one or more of the linear transmission systems or vertical stacks, the solid pharmaceutical products are selectively transmitted into individual product package blister cavities or into product package templates having locations corresponding to the blister package cavities.
Abstract:
A variety of systems and methods are described which quickly and conveniently provide for the selective transmission of individual solid pharmaceutical products from a common location into individual blister package product cavities. In accordance with the preferred exemplary embodiments, an automated alignment mechanism alters the orientation of solid pharmaceutical products that are initially arranged randomly in a two-dimensional array into one or more linear transmission systems. Each linear transmission system is essentially a one-dimensional stack of solid pharmaceutical products, vitamins or other elements. In accordance with another aspect of the present invention, after the solid pharmaceutical products have been arranged in one or more of the linear transmission systems or vertical stacks, the solid pharmaceutical products are selectively transmitted into individual product package blister cavities or into product package templates having locations corresponding to the blister package cavities.
Abstract:
A variety of systems and methods are described which quickly and conveniently provide for the selective transmission of individual solid pharmaceutical products from a common location into individual blister package product cavities. In accordance with the preferred exemplary embodiments, an automated alignment mechanism alters the orientation of solid pharmaceutical products that are initially arranged randomly in a two-dimensional array into one or more linear transmission systems. Each linear transmission system is essentially a one-dimensional stack of solid pharmaceutical products, vitamins or other elements. In accordance with another aspect of the present invention, after the solid pharmaceutical products have been arranged in one or more of the linear transmission systems or vertical stacks, the solid pharmaceutical products are selectively transmitted into individual product package blister cavities or into product package templates having locations corresponding to the blister package cavities.