Abstract:
A multi-leg equipment stand has a unitary user interface. All legs can be adjusted simultaneously, or, an individual leg can be adjusted, by distinct motions of the interface. A collar is near to an equipment support shoulder. Rotation around a vertical axis releases all legs. For a tripod, tilting the collar in one direction releases only one of three legs. The tilt may be toward the leg to be moved. The legs have adjacent, telescoping components. A control rod extends from the collar, through the hollow interior of the upper component, to a jam-plate, at the lower end of the upper component. The plate jams between an inside of the lower component, and an inside of the upper component. The rod passes through the jam-plate. Pushing the rod tilts the jam-plate, freeing it from jamming. A spring returns it to jamming if released. For each leg, the collar underside has a two level cam recess. The rods each have a cam follower surface at their shoulder end. Rotating the collar pushes each of the rods, releasing all jam-plates. Returning the collar allows the rods to move back, under influence of springs. Tilting the collar in any one of the leg directions pushes only one of the rods, tilting and releasing one jam-plate. The rod and jam-plate may be used with a single leg. The user interface can be used with two or more legs. The jam-plate may lock against a bushing, rather than directly against the upper component. Rather than rods that are pushed, cables can be pulled. Three component legs can also be activated using jam-plates.
Abstract:
Large machines, especially those having working envelopes in excess of fifteen feet, exhibit unacceptable errors because of thermal expansion and mechanical misalignments between the axes. The errors have traditionally been minimized by enclosing the machine in a thermal enclosure, by careful calibration, or by mounting a laser interferometer on each axis. These solutions are costly, may require frequent recalibration, and do not correct for small rotations of one axis relative to another axis due to wear etc. The present invention uses an interferometric laser tracker or a comparable 3D position sensor to measure the position of a retroflector attached to the end effector, e.g. a machine head when the machine comes to rest. A computer compares the measured position to the desired position according to the machine media, and adds the appropriate correction with trickle feed media statements to move the machine to the correct position prior to further machining.
Abstract:
A multi-leg equipment stand has a unitary user interface. All legs (10) can be adjusted simultaneously. A collar (80) is near to an equipment support shoulder. Rotation around a vertical axis releases all legs (10). A control rod (20) extends from the collar (80), through the hollow interior of the upper component, to a jam-plate (32). Pushing the rod (20) tilts the jam-plate (32), freeing it from jamming. A spring (40) returns it to jamming if released. Rotating the collar (80) pushes each of the rods (20), releasing all jam-plates (32). Returning the collar (80) allows the rods (20) to move back, under influence of spring. The rod (20) and jam-plate (32) may be used with a single leg (10).