Abstract:
Session parameters and/or information regarding session parameters are provided to a target device from a location server in a periodic assistance session. For example, the location server starts an unsolicited periodic assistance session, and transmits information indicating the unsolicited assistance session is periodic as well as any relevant session parameters to the target device. The location server may change session parameters "on the fly," and inform the target device of the modified session parameters. The target device may initiate a session and requests certain parameters, to which the location server responds with an indication as to what parameters the target device will actually receive. Additionally, the target device may modify the session parameters, and the location server can respond to the target indicating whether or not the modification was accepted or if the modification was accepted in a modified form.
Abstract:
Systems and methods are provided to allow for the use of existingsatellite identification parameters generically, so as to allowfor Global Navigation Satellite System (GLONASS) identification. In addition, an optional or conditional parameter is linked to the satellite identification parameter for a frequency identification, where frequency identificationis indicative of a Frequency Division Multiple Access (FDMA) frequency value. Such a frequency identificationparameter is optional as it is needed only for current GLONASS and/or near-future GLONASS (e.g., GLONASS-M) satellites. Hence, utilization of the frequency identificationparameter maybe unnecessaryand therefore, not included/not linked when considering next generation GLONASS satellites, e.g., GLONASS-K satellites. Additionally, signals supported byparticular global positioning system(GPS) satellites can be indicated with the use of generic satellite identification.
Abstract:
A generic user plane fingerprint reporting system and method. According to various embodiments, a user plane-specific generic measurement report for fingerprints is defined (100). Measurement parameters in fingerprint messages may be defined with System International (Sl) units and with sufficiently large ranges so that they can be applied on any system without system-specific dependencies (110). Various embodiments allow for the easy addition of new systems, as well as the seamless hybrid use of different systems. Still further, performance improvements achieved by various embodiments may be sufficient to fulfill requirements for emergency call positioning in the United States.
Abstract:
For enhancing the transmission of time related information, a message is received or assembled, which includes a reference time identifier. The received or assembled message is provided for transmission. At a receiving end, the reference time identifier and additional information are extracted from a received message, and the additional information is processed taking account of the reference time identifier. Alternatively or in addition, the message may include a reference time, which is indicated in units of seconds.
Abstract:
Systems and methods provide a network's synchronization status to a terminal when the terminal receives a transmission from the network. This network synchronization status can be indicated in accordance with various methods including, but not limited to the following: with a status flag in a network message; in a network capability indication; in a network's positioning capability indication; cell/network time relation information; in a time relation information of different Radio Access Technologies; and implicitly with another parameter and/or by a request for a certain measurement. When the network's synchronization status is determined, accurate time information/time assistance data can be maintained at the terminal.
Abstract:
A module (software or ASIC) for use in a serving mobile Location Centre (SMLC) or a mobile station having a GPS receiver (or an A-GPS receiver) for determining an ITOW for a CNAV-1 signal. Also provided is a module for a mobile with GPS (or A-GPS receiver) so that the mobile can use the ITOW (either the ITOW provided with the CNAV-2, or that calculated for the CNAV-1) to uniquely identify ephemeris information in a request for assistance message. Also provided is a module for a SMLC by which the SMLC can use the IOD fields in the assistance data messages in a way that uniquely identifies the associated ephemeris information.
Abstract:
For enhancing the transmission of time related information, a message is received or assembled, which includes a reference time identifier. The received or assembled message is provided for transmission. At a receiving end, the reference time identifier and additional information are extracted from a received message, and the additional information is processed taking account of the reference time identifier. Alternatively or in addition, the message may include a reference time, which is indicated in units of seconds.
Abstract:
For supporting a satellite based positioning of a mobile arrangement (30,40) with assistance data, a communication network converts parameters of a dedicated orbit model describing a movement of a satellite (50,60), which dedicated orbit model is defined for a particular satellite based positioning system, into parameters of a common orbit model describing a movement of a satellite (50,60). Alternatively or in addition, the network replaces a reference value that is based on a satellite based positioning system time in available parameters of an orbit model by a reference value that is based on a communication system time. After the parameter conversion and/or the reference value replacement, the parameters are provided as a part of assistance data for the satellite based positioning. Alternatively or in addition, a set of data is transmitted in one direction between the mobile arrangement and the communication network, which is independent of the employed positioning mode.
Abstract:
Methods and devices may request and provide assistance data from an assistance server to a receiver in a global navigation satellite system. A request for assistance data may include a preference list of navigation models suitable for the requesting receiver. Multiple preference lists for different navigation model types (e.g., orbit model, clock model, almanac model) may be included in a single list and/or data structure, or as multiple lists and/or data structures. An assistance server may receive and process the preference list, for example, by parsing and traversing the ordered list(s) for different navigation model types, in order to provide satellite navigation data to the receiver in accordance with suitable navigation models that are available at both the receiver and the assistance server.
Abstract:
A method for obtaining a service by a first terminal related to a network entity,the method comprising receiving information indicative of capabilities related to the network entity; and selecting one or more of the capabilities.