Abstract:
Disclosed are techniques to authenticate tags passing through detection regions against an access control list, receive data that identifies a number of people passing through or within the detection regions, compare the number people identified by the received data with the number of tags identified by the system, and cause an alarm to be asserted when a discrepancy is detected in the number people identified with the number of tags in a detection region with personnel within the detection region.
Abstract:
Systems (100) and methods (1400) for verifying a detachment of a security tag (108) from an article. The methods comprise: producing by a detaching unit (106) a first signal at a first frequency and a second signal at a second frequency when the security tag is in proximity thereto; generating, by a non-linear electrical circuit (504) of the security tag, a third signal from the first and second signals applied thereto; ceasing generation of the third signal by the non-linear electrical circuit when at least a first portion (306) of the security tag is moved a certain distance from the detaching unit; and determining by the detaching unit that the first portion of the security tag has been decoupled from a second portion (318) of the security tag when the third signal is no longer being generated by the non-linear electrical circuit.
Abstract:
A product information system including a server having an item database that stores at least one item identifier and corresponding item data for at least one item. Also, the item database is associated with a predetermined vendor. The server also includes a receiver that receives a message including tag data captured from a tag by a portable wireless device. The tag data includes an item identifier. Also, the server includes a processor that operates, in response to the received message, to select item data from the item database that corresponds to the received item identifier. The server also includes a transmitter that transmits the selected item data to the portable wireless device.
Abstract:
A method for configuring a pattern recognition system begins by receiving object recognition data from at least one first local image processing system. The object recognition data is stored in at least one global database. Configuration data is determined for a second local image processing system based at least in part upon the received object recognition data from the at least one first image processing system, and then transmitted to the second local image processing system.
Abstract:
Systems (100) and methods (200) for dynamically managing Functional Configurations ("FCs") of network nodes (104, 134-138). The methods involve performing operations by a First End Node ("FEN") in accordance with a first FC. FEN (104) has a first Software Module ("SM") stored thereon specifying the first FC. The first SM (122) comprises a total set of codes/functions which determine how a network node is to behave. The first EN detects a trigger event for triggering a transition from the first FC to a second FC. In response to the trigger event, the FEN automatically and dynamically obtains, from a remote network node (134, 136, 138 or 144), a second SM (124 or 126) that is different than the first SM. The first SM (stored on FEN) is then replaced with the second SM. The FEN executes the second SM such that it operates in accordance with the second FC.
Abstract:
A real-time location and tracking system includes location markers programmed with location information of the locations that the location markers are affixed to and a mobile RTLS tracking system to read location information from nearby location markers and a mobile RTLS monitoring and display system. The system is configured to receive signals from the mobile RTLS tracking system that includes a microprocessor and memory that control the functionality of the mobile RTLS monitoring and display system to display status and geo coordinates of the mobile RTLS tracking system.
Abstract:
A method and system are described for providing a wireless sensor network between a main node and a plurality of nodes, the nodes associated with sensors. The method and system define communications channels over which the main node communicates with the nodes based on a channel hopping scheme, and define at least one transfer channel that is dedicated to carrying transfer frames that are broadcast by the main node. The method and system configure non-acquired nodes that are not acquired to the network to enter a connection session by locating the at least one transfer channel to listen for a transfer message. The transfer message indicates a next communications channel that will become active. The method switches the non-acquired nodes to the next communications channel.
Abstract:
A method and system detects an intrusion into a protected area. Image data is captured and processed to create a reduced image dataset having a lower dimensionality than the captured image data. The reduced image dataset is transmitted to a centralized alarm processing device where the reduced image dataset is evaluated to determine an alarm condition. Processing at the sensor comprises separating background and foreground information, recognizing foreground objects and extracting their salient features. Determination of an alarm condition comprises recognizing behavioural patterns and applying specific rules according to the case.
Abstract:
An electronic article surveillance antenna system with wide interrogation zones has a number of core transceiver antennas with each connectable to a transmitter. The core transceiver antennas are adapted to be installed adjacent a ceiling of the wide interrogation zone and generate an interrogation signal into the wide interrogation zone. The core transceiver antennas each are connectable to a receiver to receive and detect a response signal from an electronic surveillance marker disposed in the wide interrogation zone. The system also has transceiver antenna coils with each connectable to the transmitter and adapted to be installed adjacent a floor of the wide interrogation zone. The transceiver antenna coils generate the interrogation signal into the wide interrogation zone and each is also connectable to the receiver to receive and detect the response signal from the electronic surveillance marker disposed in the wide interrogation zone.