Abstract:
The invention relates to a mirror (M) of a projection exposure apparatus for rnicrolithography for the structured exposure of a light-sensitive material and to a method for producing a mirror (M), The mirror (M) according to the Invention has a substrate body (B), a first mirror surface (S) and a second mirror surface (S5). The first mirror surface (S) is formed on a first side (VS) of the substrate body (3). The second mirror surface (S') is formed on a second side (RS) of the substrate body (B), said second side being different from the first side of the substrate body (B). The mirror (M) according to the invention can be embodied, in particular, such that the substrate body (B) is produced from a glass ceramic material.
Abstract:
A diffractive component comprises a grating (25) including plural regions (A, A', B) of different types, wherein the gratings in the different regions differ with respect to lattice period and orientation. The different regions can be arranged according to an irregular pattern. Further, the gratings of the different types can be inverse to each other, or parameters of grating forming structures can vary between regions of the different types. A structural parameter of a dual grating is determined using a first phase function of the dual grating. A deviation of a surface of an optical element from a target surface is determined in an interferometric measurement using a second phase function of the dual grating taking into account the determined structural parameter of the grating. In an interferometric method using a diffraction grating harbouring different phase functions in different types of regions arranged in a superlattice for measuring a surface of an object perturbing superlattice diffraction orders are destructively interfered by adapting the diffraction grating having a periodicity of the superlattice that varies across the grating.
Abstract:
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements. Ein erfindungsgemäßes Verfahren weist folgende Schritte auf: Durchführen einer Interferogramm-Messreihe an dem optischen Element durch Überlagerung jeweils einer durch Beugung elektromagnetischer Strahlung an wenigstens einem diffraktiven Element erzeugten und an dem optischen Element reflektierten Prüfwelle mit einer nicht an dem optischen Element reflektierten, über ein Referenzelement verlaufenden Referenzwelle, Durchführen weiterer Interferogramm-Messreihen an einer Mehrzahl von Kalibrierspiegeln zur Ermittlung von Kalibrierkorrekturen durch Überlagerung jeweils einer durch Beugung elektromagnetischer Strahlung an dem wenigstens einen diffraktiven Element erzeugten und an dem jeweiligen Kalibrierspiegel reflektierten Kalibrierwelle mit einer nicht an dem optischen Element reflektierten, über das Referenzelement verlaufenden Referenzwelle, und Bestimmen der Passe des optischen Elements basierend auf der an dem optischen Element durchgeführten Interferogramm-Messreihe und den ermittelten Kalibrierkorrekturen, wobei bei Auswertung der durchgeführten Interferogramm- Messreihen ein unterschiedlicher Phasenbezug der Interferogramm-Messreihen in seinem Einfluss auf die Ermittlung der Kalibrierkorrekturen wenigstens teilweise kompensiert wird.
Abstract:
Die Erfindung betrifft ein Computer-generiertes Hologramm (CGH) sowie ein Verfahren zur Charakterisierung der Oberflächenform eines optischen Elements. Gemäß einem Aspekt weist ein CGH einen wenigstens eine Nutzstruktur (A) aufweisenden ersten Bereich (121, 321, 421) und einen von diesem ersten Bereich (121, 321, 421) räumlich separierten zweiten Bereich (122, 322, 422) auf, wobei dieser zweite Bereich einen Kontrollbereich zur Detektion einer sich auf dem CGH (120, 320, 420, 520) ausbildenden Kontamination bildet.
Abstract:
The invention relates to a maskless lithographic apparatus (1), comprising: a light modulator (7) having a plurality of micromirrors arranged in a micromirror array for modulating an exposure beam (5) according to an exposure pattern, and an exposure optical system (8) for delivering the modulated exposure beam (5) onto a substrate (2). The apparatus (1) comprises a tilt error compensation unit (15) for compensating for tilt errors of the micromirrors of the micromirror array. The invention also relates to a corresponding method for generating an exposure pattern on a substrate (2), comprising: modulating an exposure beam (5) according to the exposure pattern using a plurality of micromirrors of a micromirror array, and delivering the modulated exposure beam (5) onto a substrate (2) in the form of a beam-spot array (40), wherein at least one of the modulating step and the delivering step comprises compensating for tilt errors of the micromirrors of the micromirror array.
Abstract:
The invention relates to a mirror (M) of a projection exposure apparatus for rnicrolithography for the structured exposure of a light-sensitive material and to a method for producing a mirror (M), The mirror (M) according to the Invention has a substrate body (B), a first mirror surface (S) and a second mirror surface (S5). The first mirror surface (S) is formed on a first side (VS) of the substrate body (3). The second mirror surface (S') is formed on a second side (RS) of the substrate body (B), said second side being different from the first side of the substrate body (B). The mirror (M) according to the invention can be embodied, in particular, such that the substrate body (B) is produced from a glass ceramic material.
Abstract:
A method for calibrating an apparatus (10) for the position measurement of measurement structures (14) on a lithography mask (12) comprises the following steps: qualifying a calibration mask (40) comprising diffractive structures (42) arranged thereon by determining positions of the diffractive structures (42) with respect to one another by means of interferometric measurement, determining positions of measurement structures (14) arranged on the calibration mask (40) with respect to one another by means of the apparatus, and calibrating the apparatus (10) by means of the positions determined for the measurement structures (14) and also the positions determined for the diffractive structures (42).
Abstract:
An optical element has an optical surface, which optical surface is adapted to a non-spherical target shape, such that a long wave variation of the actual shape of the optical surface with respect to the target shape is limited to a maximum value of 0,2 nm, wherein the long wave variation includes only oscillations having a spatial wavelength equal to or larger than a minimum spatial wavelength of 10 mm.
Abstract:
A projection exposure tool (10) for microlithography for exposing a substrate (20) comprises a projection objective (18) and an optical measuring apparatus (40) for determining a surface topography of the substrate (20) before the latter is exposed. The measuring apparatus (40) has a measuring beam path which extends outside of the projection objective (18), and is configured as a wavefront measuring apparatus, which is configured to determine topography measurement values simultaneously at a number of points on the substrate surface (21).
Abstract:
A projection exposure tool (10) for microlithography for imaging mask structures (22) of an image-providing substrate (20) onto a substrate (30) to be structured comprises a measuring apparatus (40) which is configured to determine a relative position of measurement structures (32) disposed on a surface of one of the substrates (20; 30) in relation to one another in at least one lateral direction in respect of the substrate surface and to thereby simultaneously measure a number of measurement structures (32) disposed laterally offset in relation to one another.