Abstract:
A laser utilizes feedback from a volume holographic grating integrated in a collimating lens as a wavelength standard to lock the laser output wavelength to its desired value. This feedback is optical, wherein a volume hologram reflection grating is used to generate optical feedback into the laser gain region. Fabrication of the integrated volume hologram grating lens elements is by either first recording the grating in a rectangular parallelepiped of material and then shaping the lens from it, or alternatively by first shaping the material into the desired shape and then recording the grating with the use of an apparatus composed of an optical block within which a cavity is present to accept the lens and index matching fluid.
Abstract:
A laser utilizes feedback from a volume holographic grating integrated in a collimating lens as a wavelength standard to lock the laser output wavelength to its desired value. This feedback is optical, wherein a volume hologram reflection grating is used to generate optical feedback into the laser gain region. Fabrication of the integrated volume hologram grating lens elements is by either first recording the grating in a rectangular parallelepiped of material and then shaping the lens from it, or alternatively by first shaping the material into the desired shape and then recording the grating with the use of an apparatus composed of an optical block within which a cavity is present to accept the lens and index matching fluid.