Abstract:
In general, the present invention is directed to systems for treating water or wastewater. In accordance with some embodiments of the present invention, the system may utilize a vessel with a plurality of filter beds, at least one inlet, and at least one outlet, and the system may include: a first filtration bed comprising a first granular and/or angular media, the first media having a high surface area and configured for biological and physical treatment of the water or wastewater; a second filtration bed including a second granular and/or angular media, the second media having a lower surface area than the first media; wherein the water or wastewater enters the vessel via the at least one inlet, flows through the first filtration bed and the second filtration bed, and exits the vessel through the at least one outlet.
Abstract:
The present invention is generally directed to the use of an ozone oxidation process to remove azoles and azole-type compounds from wastewater. Specifically, the present invention is directed to a chemical treatment system for wastewater, including: an oxidation module receiving wastewater input and outputting an effluent; wherein the oxidation module removes azole-type compounds from the wastewater; and wherein the effluent has a reduction in azole-type compounds greater than ninety percent (90%). In accordance with some embodiments, the present invention provides an oxidation module receiving as inputs: wastewater received from a chemical mechanical polishing process and ozone gas received from an ozone generator; the oxidation module outputting an effluent; wherein the oxidation module removes azole-type compounds from the input wastewater; wherein the effluent has a reduction in azole-type compounds greater than ninety percent (90%); and wherein the oxidation module does not require ferrous treatment or solid-liquid separation before treatment.
Abstract:
The present invention is directed to systems and methods of treating wastewater. The present invention may include a method of treating such wastewater comprising selenium in the form of water soluble selenates, selenites, and/or selenides, the method including: a chemical/biological treatment process, causing the water soluble selenates, selenites, and/or selenides in the wastewater to be converted into insoluble elemental selenium; and a physical treatment process, trapping the insoluble elemental selenium in a filtration device. Systems and methods in accordance with the present invention may also include a system for including: one or more chemical/biological treatment reactors, the one or more chemical/biological treatment reactors configured to cause the water soluble selenates, selenites, and/or selenides in the wastewater to be converted into insoluble elemental selenium; and one or more physical treatment devices, the one more physical treatment devices configured to trap the insoluble elemental selenium in a filtration device.
Abstract:
In general, the present invention is directed to systems for treating water or wastewater. In accordance with some embodiments of the present invention, the system may utilize a vessel with a plurality of filter beds, at least one inlet, and at least one outlet, and the system may include: a first filtration bed comprising a first granular and/or angular media, the first media having a high surface area and configured for biological and physical treatment of the water or wastewater; a second filtration bed including a second granular and/or angular media, the second media having a lower surface area than the first media; wherein the water or wastewater enters the vessel via the at least one inlet, flows through the first filtration bed and the second filtration bed, and exits the vessel through the at least one outlet.
Abstract:
A method of incinerating sludge in a combustor is disclosed including establishing at least one target performance characteristic of the combustor; introducing the sludge into the combustor as primary fuel; monitoring at least one performance parameter of the combustor; calculating an actual performance characteristic based on the performance parameter; and adjusting the quantity and/or quality of fuel introduced into the combustor in response to a monitored performance characteristic to substantially maintain the target performance characteristic. The apparatus for incinerating sludge includes a combustor adapted to receive sludge as fuel and incinerate the sludge; a sensor that monitors at least one performance parameter of the combustor; and a controller connected to the combustor and the sensor that 1) establishes at least one target performance characteristic of the combustor, 2) calculates an actual performance characteristic based on the performance parameter and 3) adjusts quantity and/or quality of fuel introduced into the combustor in response to a monitored performance characteristic to substantially maintain the target performance characteristic.
Abstract:
Systems and methods of treating flue gas and wastewater generated by treating the flue gas are disclosed and include introducing the flue gas, a flue gas treatment fluid that removes sulfur dioxide from the flue gas; and an organic acid conditioning agent into a wet-oxidation scrubber/absorber; introducing FGD scrubber wastewater generated by the wet-oxidation scrubber/absorber into an anoxic biological reactor to substantially denitrify the FGD scrubber wastewater; and introducing resulting substantially denitrified FGD scrubber wastewater into an anaerobic biological reactor to substantially reduce the amount of sulfate and/or selected heavy metals in the FGD scrubber wastewater.
Abstract:
The present invention is generally directed to a split drive assembly for an ultraviolet (UV) disinfection module comprising one or more UV lamps extending between one or more headers and a cleaning plate having openings therein arranged to substantially coincide with the UV lamps to permit movement of the cleaning plate along the UV lamps, the split drive assembly operatively connected to a moving device, the split drive assembly including a split drive nut having an internal bore for attachment to the moving device, the drive nut comprising at least two portions attached together around the moving device. Other aspects of the invention may include a sleeve guide including an attachment plate to attach the sleeve guide to a surface of the cleaning plate; a sleeve extended from the attachment plate; and an alignment device in contact with a UV lamp, the alignment device attached to the sleeve.
Abstract:
Systems and methods of treating flue gas and wastewater generated by treating the flue gas are disclosed and include introducing the flue gas, a flue gas treatment fluid that removes sulfur dioxide from the flue gas; and an organic acid conditioning agent into a wet-oxidation scrubber /absorber; (16, 14) introducing FGD scrubber wastewater generated by the wet-oxidation scrubber/absorber into an anoxic biological reactor (54) to substantially denitrify the FGD scrubber wastewater; and introducing resulting substantially denitrified FGD scrubber wastewater into an anaerobic biological reactor (56) to substantially reduce the amount of sulfate and/or selected heavy metals in the FGD scrubber wastewater.
Abstract:
Systems and methods for contracting with multiple parties, by which the multiple parties agree to a single contracting instrument, are presented. The systems generally comprise one or more computing devices connected to a data source, each of which are controlled by one or more entities interested in initiating a project. The data source has stored thereon a contracting instrument adapted for designating multiple parties. The systems also include a means for receiving the contracting instrument. The methods generally include the steps of identifying two or more contractors and identifying an owner interested in engaging the plurality of contractors to work on a project. After the contractors and owner have been identified, a single contracting instrument is prepared designating the contractors and the owner as executing parties to the single contracting instrument, which may then be executed.
Abstract:
Systems and methods for contracting with multiple parties, by which the multiple parties agree to a single contracting instrument, are presented. The systems generally comprise one or more computing devices connected to a data source, each of which are controlled by one or more entities interested in initiating a project. The data source has stored thereon a contracting instrument adapted for designating multiple parties. The systems also include a means for receiving the contracting instrument. The methods generally include the steps of identifying two or more contractors and identifying an owner interested in engaging the plurality of contractors to work on a project. After the contractors and owner have been identified, a single contracting instrument is prepared designating the contractors and the owner as executing parties to the single contracting instrument, which may then be executed.