Abstract:
A machine controller includes a memory and a processor configured for operating a machine control for automatically controlling apparatus for performing a machining process on a workpiece at least partially as a function of data relating to a parameter of the workpiece, and a gage control for automatically controlling gaging apparatus for collecting and processing the data relating to the parameter of the workpiece and storing the data in the memory. At least a portion of the memory in which the data relating to the parameter of the workpiece is stored, is configured as a shared memory so as to allow the machine control to immediately retrieve and use the stored data relating to the parameter of the workpiece. The controller has particular utility for use in controlling a honing process and a gaging process, which can be in-process or post-process, and which can be used for bore sizing and other parameters.
Abstract:
A servo stroking apparatus and system (lθ)for honing wherein the cam stroking motionfollows a cam profile which produces a finite jerk profile for reducing machine vibration and optimizing one or more honing parameters. The cam profile can be selected for examplefrom a simple harmonic cam profile, a cycloidal profile, a modified trapezoidal profile, apolynomial profile, and a modified sine profile, or a mix of cam profiles. The servocontrolled stroker mechanism can include for instance a ball screw mechanis (36), a linearmotor (40), a fluid cylinder, a chain drive or a belt drive. One or more other servo controlledaspects of the honing operation can be synchronized with the servo controlled strokingoperation, such as the, rotation of the honing tool.
Abstract:
A servo stroking apparatus and system for honing wherein the cam stroking motion follows a cam profile which produces a finite jerk profile for reducing machine vibration and optimizing one or more honing parameters. The cam profile can be selected for example from a simple harmonic cam profile, a cycloidal profile, a modified trapezoidal profile, a polynomial profile, and a modified sine profile, or a mix of cam profiles. The servo controlled stroker mechanism can include for instance a ball screw mechanism, a linear motor, a fluid cylinder, a chain drive or a belt drive. One or more other servo controlled aspects of the honing operation can be synchronized with the servo controlled stroking operation, such as the rotation of the honing tool.
Abstract:
An automated bore finishing process particularly adapted for lapping automatically corrects one or more bore parameters, such as diameter, geometry, surface finish, in an iterative manner to reach a final value, controlled by algorithms that process feedback from a measurement process. The process determines bore parameter information and determines an optimum set of values for the process parameters, such as stroke position, stroke length and duration of the next lapping iteration. This optimization is targeted to achieve the desired final bore parameter or parameters within the specified bore size limits, and may be used to alter the stroke profile either for the entire next iteration or in a continuously changing manner, to minimize or eliminate bore defects over one or a succession of iterations.
Abstract:
A machine controller includes a memory and a processor configured for operating a machine control for automatically controlling apparatus for performing a machining process on a workpiece at least partially as a function of data relating to a parameter of the workpiece, and a gage control for automatically controlling gaging apparatus for collecting and processing the data relating to the parameter of the workpiece and storing the data in the memory. At least a portion of the memory in which the data relating to the parameter of the workpiece is stored, is configured as a shared memory so as to allow the machine control to immediately retrieve and use the stored data relating to the parameter of the workpiece. The controller has particular utility for use in controlling a honing process and a gaging process, which can be in-process or post-process, and which can be used for bore sizing and other parameters.
Abstract:
The feed system (30) for a honing machine (10) provides a capability to dynamically correct in real time errors in bore size inferred arising from variations in feed force, and a method of operation of the same. The system (10) allows a user to select between rate and force controlled honing modes, which provides one or more of the advantages of both modes. The system provides capabilities for automatic rapid automatic bore wall detection, compensation for elasticity of elements of the feed system (30) and honing tool (14), and automatic tool protection. The system is automatically operable using feed force, feed rate and positional information for honing a work piece (20) to one or more target parameters, such as one or more in-process sizes and a final size.