Abstract:
A machine tool display device (92) provides a continuous real time display (42, 58) of a machine tool load as a function of position of a tool (76) relative to a work surface (14, 84) being machined. Position is displayed on a first axis (46) and load is displayed on a second axis (48) perpendicular to the first axis. A mirror image of the display may be provided about a third axis (66) perpendicular to the first axis so that a cross sectional representation of the working surface is displayed (58). The machine tool includes means for manula or automatic adjustment of the position of the tool (76) relative to the work surface (84) to achieve a predetermined final work surface profile.
Abstract:
A machine controller includes a memory and a processor configured for operating a machine control for automatically controlling apparatus for performing a machining process on a workpiece at least partially as a function of data relating to a parameter of the workpiece, and a gage control for automatically controlling gaging apparatus for collecting and processing the data relating to the parameter of the workpiece and storing the data in the memory. At least a portion of the memory in which the data relating to the parameter of the workpiece is stored, is configured as a shared memory so as to allow the machine control to immediately retrieve and use the stored data relating to the parameter of the workpiece. The controller has particular utility for use in controlling a honing process and a gaging process, which can be in-process or post-process, and which can be used for bore sizing and other parameters.
Abstract:
A honing machine in which a micro-processor controls reciprocation with respect to a work-piece of a spindle which carries honing stones, the micro-processor being associated with a memory unit which holds an acceleration profile in terms of position/time and being programmed to control reciprocation in accordance with the required acceleration characteristics. Variable stroke parameters and required mid-stroke speed are input from a console and the system ensures symmetrical honing under controlled acceleration regardless of any conflict between selected stroke length and mid-stroke speed.
Abstract:
A machine controller includes a memory and a processor configured for operating a machine control for automatically controlling apparatus for performing a machining process on a workpiece at least partially as a function of data relating to a parameter of the workpiece, and a gage control for automatically controlling gaging apparatus for collecting and processing the data relating to the parameter of the workpiece and storing the data in the memory. At least a portion of the memory in which the data relating to the parameter of the workpiece is stored, is configured as a shared memory so as to allow the machine control to immediately retrieve and use the stored data relating to the parameter of the workpiece. The controller has particular utility for use in controlling a honing process and a gaging process, which can be in-process or post-process, and which can be used for bore sizing and other parameters.
Abstract:
The feed system (30) for a honing machine (10) provides a capability to dynamically correct in real time errors in bore size inferred arising from variations in feed force, and a method of operation of the same. The system (10) allows a user to select between rate and force controlled honing modes, which provides one or more of the advantages of both modes. The system provides capabilities for automatic rapid automatic bore wall detection, compensation for elasticity of elements of the feed system (30) and honing tool (14), and automatic tool protection. The system is automatically operable using feed force, feed rate and positional information for honing a work piece (20) to one or more target parameters, such as one or more in-process sizes and a final size.
Abstract:
A honing machine has a stone expansion system in which the honing stones are expanded radially via wedges by radial movement generated by a d.c. wedge motor. The motor (13) is driven by a constant-current amplifier (50) which provides a driving current according to a required stone pressure (a). This determines the torque of the motor during honing. A speed input (g) sets a required approach speed and from this is derived a control signal which controls an on/off controller (55). This causes the output current of the constant-current amplifier to be chopped, thereby controlling speed as the stones approach the wall of the bore whilst allowing control of torque during honing.