Abstract:
An aircraft uses trajectory-based control algorithms for blade pitch (or twist). This approach greatly enhances the ability of the actuator to accurately achieve the desired blade pitch and to track the commanded pitch position. An actuator includes an electronic rotor blade controller that converts communicated or desired changes in pitch (or similar parameter) to actual physical effects that match the desired changes as closely as possible. The controller preferably includes a motor drive circuit, such as an h-bridge, a communication circuit for connection to external commands, and a processor with associated enabling circuitry (e.g. memory, I/O) to coordinate and implement the control.
Abstract:
Systems and methods are contemplated for favorably improving flight dynamics of aircraft, including enhanced aerodynamic braking and improved flight maneuverability. Air braking systems selectively position a first set of blades at a negative thrust pitch to product a net negative thrust across first and second sets of blades, while balancing torque of the drive shafts to zero. First and second sets of IBC blades can be driven by the same shaft or torque-linked shafts. Flight maneuver systems operate a powerplant at a high power mode, and dissipate the energy from the high power output by positioning a first set of IBC blades at a low efficiency pitch while maintaining constant thrust. As increased or rapid flight maneuverability is required, the first set of blades is positioned toward a high efficiency pitch to instantly increase thrust to the aircraft without requiring a related increase in energy output from the powerplant.
Abstract:
Electrically controlled and/or actuated landing gear mechanisms are presented that allow for adjustment of aircraft attitude on the ground as well as for retraction and extension of the landing gear in a single unit. Most preferably, the electric actuator is positioned within the diameter of the strut to thereby form a compact and load bearing structure.
Abstract:
Contemplated gearboxes provide first and second power-balanced paths in which a speed changer is configured to operate with only one path. Most preferably, the gearbox includes a friction clutch and a sprag clutch arranged such that, together with a layshaft and spur-gear differential, gear shifting can be done while transmitting power.
Abstract:
Systems and methods are contemplated for favorably improving flight dynamics of aircraft, including enhanced aerodynamic braking and improved flight maneuverability. Air braking systems selectively position a first set of blades at a negative thrust pitch to product a net negative thrust across first and second sets of blades, while balancing torque of the drive shafts to zero. First and second sets of IBC blades can be driven by the same shaft or torque-linked shafts. Flight maneuver systems operate a powerplant at a high power mode, and dissipate the energy from the high power output by positioning a first set of IBC blades at a low efficiency pitch while maintaining constant thrust. As increased or rapid flight maneuverability is required, the first set of blades is positioned toward a high efficiency pitch to instantly increase thrust to the aircraft without requiring a related increase in energy output from the powerplant.
Abstract:
A spar of a rotor blade having moderate depth transitions to a relatively much deeper shank over a relatively short distance. This rapid transition enables a low-weight blade root that is structurally efficient, offers a high moment capability, and enables high Mach number axial flow. A transition could advantageously reduce section depth by at least 15%, 20%, 30%, or even 40% over at most 5%, 6%, 10%, or 12% of a total length of the rotor blade. Such a transition could advantageously be accomplished using a cuff, which has interfaces with each of the spar and the shank. The rotor blade shank has a generally circular cross-section which allows for a rotary attachment to a hub, where the attachment may advantageously comprise a mechanical or elastomeric bearing. Preferred embodiments have a spar with a generally rectangular cross-section.
Abstract:
Contemplated gearboxes provide first and second power-balanced paths in which a speed changer is configured to operate with only one path. Most preferably, the gearbox includes a friction clutch and a sprag clutch arranged such that, together with a layshaft and spur-gear differential, gear shifting can be done while transmitting power.
Abstract:
Contemplated gearboxes combine a high numerical reduction ratio with the capability of transmitting power at a superior power-to-weight ratio using a compound star planetary gearbox configuration that is radially expanded using hollow driveshafts to link the planet gears. In most preferred compound planetary gear arrangements, planets of different diameter are torsionally connected to each other, or mesh with each other. Input and output gears counter-rotate while the planets rotate in bearings anchored to a static casing.
Abstract:
A tiltrotor aircraft is designed to accommodate rotors of different diameters, as well as corresponding wings and fuselages with different span and length, while maintaining very high parts commonality, especially with respect to drive train and power source. This enables design and operation of a fleet of such aircraft with significantly different rotor diameters, which are nevertheless optimized for different missions. In preferred embodiments the rotors are configured to have high stiffness and low weight to reduce aero-structural dynamic issues across the fleet. Also in preferred embodiments drive systems are designed for a full range of speed, torque, and power associated with all intended rotors. Turboshaft engine speeds are restricted to a narrow RPM range, so that a single gearset can be replaced to achieve the desired rotor RPM. Also in preferred embodiments, aircraft in a fleet can differ in folded length, empty weight, payload length by up 50%.
Abstract:
Methods of manufacturing and operating a solar powered aircraft having segmented wings that can be reconfigured during flight to optimize collection of solar energy are described. The aircraft have rigid construction that is resistant to inclement weather and is configured to rely on free flight control at high altitude and under conventional conditions, thereby providing flight duration in excess of 2 months. The aircraft is particularly suitable for use as part of a telecommunications network.