Abstract:
A sensor wipe, made in part by a hydroentangling or conforming process, includes fibers onto which an indicator dye is immobilized. The substrate may be used to make sensor wipes for testing surface conditions, including but not limited to p H or the presence of certain microbes. The indicator dye does not leach from the sensor wipe. The indicator dye may be reversible so that the sensor wipe can be reused prior to disposal.
Abstract:
Compositions having durable antimicrobial activity are disclosed herein. The durable antimicrobial compositions include a carbonate/bicarbonate salt of a quaternary ammonium cation, an organic acid, hydrogen peroxide, a surfactant, and a cationic polymer. The cationic polymer includes either a (3-acrylamidopropyl)trimethylammonium chloride monomer or a [2-(acrylolyoxy)ethyl]trimethylammonium chloride monomer. The cationic polymer also includes another monomer selected from a polar, water-soluble monomer, a hydrophobic, silicone-containing monomer or mixtures of both types of monomers in combination with one of the trimethylammonium chloride monomers. The surfactant is selected from cationic surfactants, non-ionic surfactants, zwitterionic surfactants, and combinations thereof.
Abstract:
A liquid surfactant composition includes at least one anionic surfactant and at least one cationic surfactant. The combination of surfactants is formulated to provide a liquid composition that swells in the presence of water or body fluids, becomes a moldable solid in the presence of an excess of water, and adheres to surfaces. In addition, the liquid surfactant composition may be incorporated into or onto a substrate, such as an absorbent substrate, a fabric or cloth substrate, a tissue substrate, or a protective garment substrate.
Abstract:
An ultrasonic mixing system having a treatment chamber in which at least two separate phases can be mixed to prepare an emulsion is disclosed. Specifically, at least one phase is a dispersed phase and one phase in a continuous phase. The treatment chamber has an elongate housing through which the phases flow longitudinally from a first inlet port and a second inlet port, respectively, to an outlet port thereof. An elongate ultrasonic waveguide assembly extends within the housing and is operable at a predetermined ultrasonic frequency to ultrasonically energize the phases within the housing. An elongate ultrasonic horn of the waveguide assembly is disposed at least in part intermediate the inlet and outlet ports, and has a plurality of discrete agitating members in contact with and extending transversely outward from the horn intermediate the inlet and outlet ports in longitudinally spaced relationship with each other. The horn and agitating members are constructed and arranged for dynamic motion of the agitating members relative to the horn at the predetermined frequency and to operate in an ultrasonic cavitation mode of the agitating members corresponding to the predetermined frequency and the phases being mixed in the chamber.
Abstract:
An ultrasonic mixing system having a particulate dispensing system to dispense particulates into a treatment chamber and the treatment chamber in which particulates can be mixed with one or more formulations is disclosed. Specifically, the treatment chamber has an elongate housing through which a formulation and particulates flow longitudinally from an inlet port to an outlet port thereof. An elongate ultrasonic waveguide assembly extends within the housing and is operable at a predetermined ultrasonic frequency to ultrasonically energize the formulation and particulates within the housing. An elongate ultrasonic horn of the waveguide assembly is disposed at least in part intermediate the inlet and outlet ports, and has a plurality of discrete agitating members in contact with and extending transversely outward from the horn intermediate the inlet and outlet ports in longitudinally spaced relationship with each other. The horn and agitating members are constructed and arranged for dynamic motion of the agitating members relative to the horn at the predetermined frequency and to operate in an ultrasonic cavitation mode of the agitating members corresponding to the predetermined frequency and the formulation and particulates being mixed in the chamber.
Abstract:
An ultrasonic mixing system having a treatment chamber in which at least two separate phases can be mixed to prepare an emulsion is disclosed. Specifically, at least one phase is a dispersed phase and one phase in a continuous phase. The treatment chamber has an elongate housing through which the phases flow longitudinally from a first inlet port and a second inlet port, respectively, to an outlet port thereof. An elongate ultrasonic waveguide assembly extends within the housing and is operable at a predetermined ultrasonic frequency to ultrasonically energize the phases within the housing. An elongate ultrasonic horn of the waveguide assembly is disposed at least in part intermediate the inlet and outlet ports, and has a plurality of discrete agitating members in contact with and extending transversely outward from the horn intermediate the inlet and outlet ports in longitudinally spaced relationship with each other. The horn and agitating members are constructed and arranged for dynamic motion of the agitating members relative to the horn at the predetermined frequency and to operate in an ultrasonic cavitation mode of the agitating members corresponding to the predetermined frequency and the phases being mixed in the chamber.
Abstract:
An ultrasonic treatment system having a treatment chamber for treating a formulation to increase the shelf life thereof. In one embodiment, the shelf life is produced by degassing the formulation using the treatment chamber. Specifically, the treatment chamber has an elongate housing through which a formulation flows longitudinally from an inlet port to a first outlet port and a second outlet port thereof. An elongate ultrasonic waveguide assembly extends within the housing and is operable at a predetermined ultrasonic frequency to ultrasonically energize the formulation within the housing. An elongate ultrasonic horn of the waveguide assembly is disposed at least in part intermediate the inlet and outlet ports, and has a plurality of discrete agitating members in contact with and extending transversely outward from the horn intermediate the inlet and outlet ports in longitudinally spaced relationship with each other. The horn and agitating members are constructed and arranged for dynamic motion of the agitating members relative to the horn at the predetermined frequency and to operate in an ultrasonic cavitation mode of the agitating members corresponding to the predetermined frequency and the formulation being treated in the chamber.
Abstract:
The present disclosure is directed to methods and compositions for clearing and cleaning enteral feeding tubes. More particularly, the composition is an ingestible gel composition that comprises enzymes for degrading buildup in enteral feeding tubes, carrageenan, and divalent metal ions or a source thereof. The carrageenan present in the composition stabilizes the enzymes at room temperatures, allowing for long-term storage of the composition. Upon injecting the gelled composition into the feeding tube, body heat from the patient melts the gel, and the enzymes are released to act on debris present in the feeding tube.
Abstract:
A dispenser (10) includes (i) a reservoir- (12) containing a personal care composition, (14) wherein the personal care composition is a moisturizer, sun-protective material, after-sun care material, skin conditioning agent, astringent material, skin cle.anser, acne treatment, cosmetic remover, massage oil, or skin nutrient agent; (ii) at least one nozzle (16) in fluid communication with the reservoir; and (iii) an on-off frequency generator (20) in fluid communication between the reservoir and the nozzle, the frequency- generator adapted to deliver a pulse rate frequency of 0.1 to 500 Hz.
Abstract:
A synergistic antimicrobial composition containing at least two kinds of antimicrobial agents, including poly-hexamethylene biguanide (PHMB), stably associated to a material substrate is described. The substrate can take the forms of an anti-infection face mask, medical devices, or surgical instruments.