Abstract:
A method of preparing metal-modified silica particles is disclosed. Specifically, a treatment chamber is provided in which a first and a second formulation are ultrasonically mixed to prepare metal-modified silica particles. The treatment chamber has an elongate housing through which the first and second formulations flow longitudinally from a first inlet port and a second inlet port, respectively, to an outlet port thereof. An elongate ultrasonic waveguide assembly extends within the housing and is operable at a predetermined ultrasonic frequency to ultrasonically energize the formulations within the housing. An elongate ultrasonic horn of the waveguide assembly is disposed at least in part intermediate the inlet and outlet ports, and has a plurality of discrete agitating members in contact with and extending transversely outward from the horn intermediate the inlet and outlet ports in longitudinally spaced relationship with each other. The horn and agitating members are constructed and arranged for dynamic motion of the agitating members relative to the horn at the predetermined frequency and to operate in an ultrasonic cavitation mode of the agitating members corresponding to the predetermined frequency and the formulations being mixed in the chamber.
Abstract:
A method of preparing metal-modified silica particles is disclosed. Specifically, a treatment chamber is provided in which a first and a second formulation are ultrasonically mixed to prepare metal-modified silica particles. The treatment chamber has an elongate housing through which the first and second formulations flow longitudinally from a first inlet port and a second inlet port, respectively, to an outlet port thereof. An elongate ultrasonic waveguide assembly extends within the housing and is operable at a predetermined ultrasonic frequency to ultrasonically energize the formulations within the housing. An elongate ultrasonic horn of the waveguide assembly is disposed at least in part intermediate the inlet and outlet ports, and has a plurality of discrete agitating members in contact with and extending transversely outward from the horn intermediate the inlet and outlet ports in longitudinally spaced relationship with each other. The horn and agitating members are constructed and arranged for dynamic motion of the agitating members relative to the horn at the predetermined frequency and to operate in an ultrasonic cavitation mode of the agitating members corresponding to the predetermined frequency and the formulations being mixed in the chamber.
Abstract:
A process for treating a textile web includes applying a first treatment agent to the web. The web is moved in an open configuration over a contact surface of an ultrasonic vibration system. The ultrasonic vibration system is operated to impart ultrasonic energy to the textile web to facilitate the distribution of the first treatment agent through a first extent of the thickness of the textile web. A second treatment agent is applied to the web. The web is moved in an open configuration thereof over a contact surface of an ultrasonic vibration system. The ultrasonic vibration system is operated to impart ultrasonic energy to the textile web to facilitate the distribution of the second treatment agent through a second extent of the thickness of the web. The second extent is different than the first extent.
Abstract:
A thermonuclear fusion system having a treatment chamber in which gas isotopes are fused to initiate a thermonuclear fusion reaction is disclosed. Specifically, the treatment chamber has an elongate housing through which liquid and gas isotopes flow longitudinally from an inlet port to an outlet port thereof. An elongate ultrasonic waveguide assembly extends within the housing and is operable at a predetermined ultrasonic frequency and a predetermined electrode potential to ultrasonically enhance the concentration of dissolved hydrogen gas isotopes within the housing or energize and electrolyze the liquid and gas isotopes within the housing. An elongate ultrasonic horn of the waveguide assembly is disposed at least in part intermediate the inlet and outlet ports, and has a plurality of discrete agitating members in contact with and extending transversely outward from the horn intermediate the inlet and outlet ports in longitudinally spaced relationship with each other. The horn and agitating members are constructed and arranged for dynamic motion of the agitating members relative to the horn at the predetermined frequency and to operate in an ultrasonic cavitation mode of the agitating members corresponding to the predetermined frequency and the liquid and gas isotopes being treated in the chamber.
Abstract:
An ultrasonic liquid delivery device including a housing having an internal chamber and at least one exhaust port communicating with the internal chamber. An ultrasonic waveguide in the internal chamber ultrasonically energizes liquid within the chamber prior to the liquid being exhausted through the exhaust port. The waveguide includes a valve member movable relative to the housing between a closed position closing the exhaust port, and an open position. An excitation device is operable in the open position of the valve member to ultrasonically excite the ultrasonic waveguide to atomize liquid exiting the exhaust port.
Abstract:
In a control system and method for operating an ultrasonic liquid delivery device, an ultrasonic waveguide, separate from the housing, is disposed at least in part within an internal chamber of the housing to ultrasonically energize liquid prior to the liquid being exhausted from the housing through an exhaust port. An excitation device is operable to ultrasonically excite the waveguide and a control system controls operation of the liquid delivery device between an excitation mode in which the excitation device is operated at an excitation frequency to excite the ultrasonic waveguide and a ring down mode in which the excitation device is inoperable to excite the waveguide such that the waveguide rings down. The control system monitors the ring down and is responsive to the ring down to adjust the excitation frequency of the excitation device in the excitation mode thereof.
Abstract:
In a process for dyeing a textile web (23) having a first face and a second face opposite the first face, dye is applied to the textile web and the web (23) is then moved in an open configuration thereof over a contact surface of an ultrasonic vibration system (61) with the textile web in direct contact with the contact surface (63) of the ultrasonic vibration system (61). The ultrasonic vibration system (61) is operated to impart ultrasonic energy to the textile web to facilitate the distribution of dye throughout the web. The web (23) is then moved further in its open configuration through a microwave application chamber (107) of a microwave system (101) and the microwave system is operated to impart microwave energy to the web in the microwave application chamber to facilitate binding of the dye to the web.
Abstract:
Delivery systems for incorporating functional compounds into substrates for use in various consumer products are disclosed. Specifically, the delivery system includes a carrier component comprising an ultrasonically energized adsorbent and one or more functional compounds. The ultrasonically energized adsorbent can adsorb the desired functional compounds and bind the functional compounds to the surface of the substrate.
Abstract:
In a system and process for ultrasonically treating a liquid and delivering the liquid as a spray of liquid droplets, liquid is directed to flow along a flow path over a first ultrasonic waveguide, with the first ultrasonic waveguide having at least one agitating member extending outward therefrom and into the flow path. The first ultrasonic waveguide and agitating member (s) are excited to agitate the liquid as the liquid flows along the flow path. The liquid is further directed to flow along the flow path over a second waveguide, with the second waveguide having a terminal end adjacent an exit of the flow path. The second ultrasonic waveguide is ultrasonically excited at least at its terminal end to ultrasonically energize the liquid just prior to the liquid exiting the flow path such that the liquid exits the flow path as a spray of liquid droplets.
Abstract:
A method comprises providing a first electrically-conductive circuit-path (22), and separately providing a second electrically-conductive circuit-path (24). A portion of the first circuit-path is positioned proximally adjacent a portion of the second circuit-path at a first predetermined electrical bond location (26). A first, electrically-insulating barrier layer (28) is interposed between the first circuit-path and second circuit-path at the first bond location, and the first circuit-path is mechanically bonded to the second circuit-path at the first bond location. The mechanical bonding configured to provide an electrically-conductive bond-path between the first circuit-path and the second circuit-path at the first bond location. The mechanical bonding may desirably include ultrasonic bonding and/or pressure bonding.