Abstract:
Processes and systems for the production for pressure management of a polymerization product flowing from a loop polymerization reactor to a separation vessel in a slurry polymerization system are disclosed herein. For example, a process comprises withdrawing the polymerization product from a loop polymerization reactor, and conveying the withdrawn polymerization product to a separation vessel via a first pressure differential and a second pressure differential. The withdrawn polymerization product may flow through the first pressure differential before flowing through the second pressure differential, and the first pressure differential may be less than the second pressure differential.
Abstract:
A process for component separation in a polymer production system, comprising separating a polymerization product stream into a gas stream and a polymer stream, wherein the gas stream comprises ethane and unreacted ethylene, distilling the gas stream into a light hydrocarbon stream, wherein the light hydrocarbon stream comprises ethane and unreacted ethylene, contacting the light hydrocarbon stream with an absorption solvent system, wherein at least a portion of the unreacted ethylene from the light hydrocarbon stream is absorbed by the absorption solvent system, and recovering a waste gas stream from the absorption solvent system, wherein the waste gas stream comprises ethane, hydrogen, or combinations thereof.
Abstract:
A technique for polymerizing ethylene on catalyst in a first polymerization reactor and in a second polymerization reactor to form polyethylene particles, and controlling particle size of the polyethylene particles.
Abstract:
A polyolefin production system including: a first reactor configured to produce a first discharge slurry having a first polyolefin; a second reactor configured to produce a second discharge slurry having a second polyolefin; and a post-reactor treatment zone having at least a separation vessel configured to receive the second discharge slurry or both the first discharge slurry and the second discharge slurry.
Abstract:
A process and apparatus for passing a polymerization effluent, comprising solid polymer, unreacted monomer, diluent and minor amounts of contaminants, to a high pressure flash where most of the fluid components are flashed and wherein a slip stream comprising diluent and minor amounts of monomer is separated from the bulk of the flashed fluid components. The slip stream is subjected to olefin removal to give an essentially olefin-free stream for recycle to a catalyst mud preparation area. The bulk of the flashed fluid components are recycled directly back to the polymerization zone without expensive olefin removal, although treatment to remove other contaminants can optionally be performed. The polymer and entrained fluid is passed to a low pressure flash zone where the fluids are flashed off, compressed and joined with the flash from the high pressure flash tank. Because the bulk of the fluids are removed in the high pressure flash, compression and cooling of product fluids prior to recycle is kept to a minimum.
Abstract:
A process for component separation in a polymer production system, comprising separating a polymerization product stream into a gas stream and a polymer stream, wherein the gas stream comprises ethane and unreacted ethylene, distilling the gas stream into a light hydrocarbon stream, wherein the light hydrocarbon stream comprises ethane and unreacted ethylene, contacting the light hydrocarbon stream with an absorption solvent system, wherein at least a portion of the unreacted ethylene from the light hydrocarbon stream is absorbed by the absorption solvent system, and recovering a waste gas stream from the absorption solvent system, wherein the waste gas stream comprises ethane, hydrogen, or combinations thereof.
Abstract:
A system and method for polymerizing olefin in the presence of a chain transfer agent in a first reactor to form a first polyolefin, discharging from the first reactor a transfer slurry having the first polyolefin and the chain transfer agent, and processing the transfer slurry in a separator to remove chain transfer agent and to provide a fluff slurry having the first polyolefin and a lower content of chain transfer agent than in the transfer slurry. The system and method provide for feeding the fluff slurry to a second reactor, polymerizing olefin in the second reactor to form a second polyolefin, and discharging from the second reactor a slurry having the second polyolefin.
Abstract:
A system and method for discharging a transfer slurry from a first polymerization reactor through a transfer line to a second polymerization reactor, the transfer slurry including at least diluent and a first polyethylene. A product slurry is discharged from the second polymerization reactor, the product slurry including at least diluent, the first polyethylene, and a second polyethylene. The velocity, pressure drop, or pressure loss due to friction in the transfer line is determined, and a process variable adjusted in response to the velocity, pressure drop, or pressure loss not satisfying a specified value.
Abstract:
The present embodiments provide a system and method for separation within a polymer production process. Specifically, a flashline heater configured according to present embodiments may provide more time than is required for complete vaporization of liquid hydrocarbons that are not entrained within a polymer fluff produced within a polymerization reactor. Such extra time may allow for liquid hydrocarbons that are entrained within the polymer fluff to be vaporized.
Abstract:
A polymerization loop reactor including a loop reaction zone, a continuous takeoff, and a fluid slurry disposed in the reaction zone. A generally cylindrical wall defines the loop reaction zone. The length of the loop reaction zone and the nominal outside diameter of the generally cylindrical wall define a length / diameter ratio greater than 250. The reactor can be charged with a fluid slurry including an olefin monomer reactant, solid olefin polymer particles, and a liquid diluent. The concentration of the solid olefin polymer particles in the slurry can be greater than 40 weight percent based on the weight of polymer particles and the weight of liquid diluent. Also disclosed is a polymerization process carried out by polymerizing, in the loop reaction zone of a reactor as defined above, at least one olefin monomer in a liquid diluent to produce a fluid slurry as defined above.