Abstract:
Neutralizing antibodies and antigen binding fragments that specifically bind to Ebola virus glycoprotein are disclosed. Nucleic acids encoding these antibodies, vectors and host cells are also provided. Methods for detecting Ebola virus using the antibodies and antigen binding fragments are disclosed. The antibodies, antigen binding fragments, nucleic acids, and vectors, can be used, for example, to prevent and/or treat Ebola virus infection in a subject.
Abstract:
The invention relates to antibodies and antigen binding fragments thereof that are capable of binding to influenza B virus hemagglutinin (HA) and neutralizing influenza B virus in two phylogenetically distinct lineages. In one embodiment, the antibody or antigen binding fragment is capable of binding to influenza B virus hemagglutinin and neutralizing influenza B virus in Yamagata and Victoria lineages.
Abstract:
The invention relates to antibodies and antigen binding fragments thereof that are capable of binding to influenza B virus hemagglutinin (HA) and neutralizing influenza B virus in two phylogenetically distinct lineages. In one embodiment, the antibody or antigen binding fragment is capable of binding to influenza B virus hemagglutinin and neutralizing influenza B virus in Yamagata and Victoria lineages.
Abstract:
Antibodies, and antigen binding fragments thereof, that specifically bind to an epitope in the stem region of an influenza A hemagglutinin trimer and neutralize a group 1 subtype and a group 2 subtype of influenza A virus. Nucleic acids that encode, immortalized B cells and cultured single plasma cells that produce, and to epitopes that bind to such antibodies and antibody fragments. In addition, the use of the antibodies, antibody fragments, and epitopes in screening methods as well as in the diagnosis, treatment and prevention of influenza A virus infection.
Abstract:
The invention relates to antibodies, and antigen binding fragments thereof, that bind to hemagglutinin and neutralize a group 1 subtype and a group 2 subtype of influenza A virus. The invention also relates to nucleic acids that encode, immortalized B cells and cultured single plasma cells that produce, and to epitopes that bind to such antibodies and antibody fragments. In addition, the invention relates to the use of the antibodies, antibody fragments, and epitopes in screening methods as well as in the diagnosis, treatment and prevention of influenza A virus infection.
Abstract:
The inventor has provided human antibodies that can neutralize a H5N1 strain of influenza A virus. He has also provided antibodies that can neutralize a strain of influenza A virus in clade 2 of the H5 subtype, that can neutralize a H5N1 strain of influenza A virus and have a lambda light chain, and that are IgG antibodies (but not with a IgGI heavy chain) that can neutralize a H5N1 strain of influenza A virus.
Abstract:
The invention relates to neutralizing antibodies, and antibody fragments thereof, having high potency in neutralizing hCMV, wherein said antibodies and antibody fragments are specific for one, or a combination of two or more, hCMV gene UL products. The invention also relates to immortalized B cells that produce, and to epitopes that bind to, such antibodies and antibody fragments. In addition, the invention relates to the use of the antibodies, antibody fragments, and epitopes in screening methods as well as in the diagnosis, prevention, and therapy of disease.
Abstract:
The invention relates to methods of producing antibodies, including monoclonal antibodies, comprising culturing a limited number of plasma cells. It also relates to methods of identifying antibodies by performing assays on the antibodies produced by the cultured plasma cells to determine their function, binding specificity, epitope specificity, and/or their ability to neutralize a toxin or a pathogen. The invention also relates to antibodies and antibody fragments produced by the methods of the invention as well as methods of using the antibodies and antibody fragments.
Abstract:
The invention relates to antibodies and antigen binding fragments thereof and to cocktails of antibodies and antigen binding fragments that neutralize dengue virus infection without contributing to antibody-dependent enhancement of dengue virus infection. The invention also relates to immortalized B cells that produce, and to epitopes that bind to, such antibodies and antigen binding fragments. In addition, the invention relates to the use of the antibodies, antigen binding fragments, and epitopes in screening methods as well as in the diagnosis and therapy of dengue virus infection.
Abstract:
The invention relates to antibodies and antigen binding fragments thereof, that bind to hemagglutinin and neutralize infection of at least two different group 1 subtypes or at least two different group 2 subtypes of influenza A virus. The invention also relates to nucleic acids that encode, immortalized B cells and cultured single plasma cells that produce, and to epitopes that bind to, such antibodies and antibody fragments. In addition, the invention relates to the use of the antibodies, antibody fragments, and epitopes in screening methods as well as in the diagnosis, treatment and prevention of influenza A virus infection.