Abstract:
Technologies are generally described for percutaneous valve delivery systems with continuous blood flow, By providing a temporary perfusion channel in balloon-expandable stent and/or valve replacement systems, blood flow during the deployment of the stent or valve, when the inflation of the balloon may interrupt the blood flow, is ensured. The perfusion channel may be formed employing an elongated braided structure, which may be expanded radially and outwards upon being longitudinally compressed. One-way blood flow through the channel may be accomplished by providing a temporary check valve.
Abstract:
Single- or dual-bladder devices for remote ischemic preconditioning and blood pressure monitoring are disclosed along with various oscillometry-based and other methods for detecting systolic and diastolic blood pressure while the ischemic preconditioning treatment is in progress. The devices and methods of the invention provide for delivery of ischemic preconditioning at the lowest effective cuff pressure while closely monitoring patient's hemodynamics. Advantageously, the device of the invention allows both ischemic preconditioning and blood pressure monitoring to be done on the same limb. Disposable battery-powered version of the device of the present invention is especially useful for emergency use with patients suffering from acute myocardial infarction, acute stroke, or acute trauma. Additional device configurations are described for use in a percutaneous intervention and vascular sealing settings.
Abstract:
Single- or dual-bladder devices for remote ischemic preconditioning and blood pressure monitoring are disclosed along with various oscillometry-based and other methods for detecting systolic and diastolic blood pressure while the ischemic preconditioning treatment is in progress. The devices and methods of the invention provide for delivery of ischemic preconditioning at the lowest effective cuff pressure while closely monitoring patient's hemodynamics. Advantageously, the device of the invention allows both ischemic preconditioning and blood pressure monitoring to be done on the same limb. Disposable battery-powered version of the device of the present invention is especially useful for emergency use with patients suffering from acute myocardial infarction, acute stroke, or acute trauma. Additional device configurations are described for use in a percutaneous intervention and vascular sealing settings.
Abstract:
A method for performing an in-vivo calibration of a blood pressure sensor 40 that is associated with an in-vivo balloon system. The method involves monitoring a patient's blood pressure by observing the system gas pressure while at the same time monitoring the patient's blood pressure through the sensor. The blood pressure measurements obtained by monitoring the system gas pressure are used as reference, or "true, " blood pressure measurements, and an "offset" is determined between the reference blood pressure measurements and the blood pressure measurements obtained through the sensor. The offset can be stored in a memory 42, which may also store sensor sensitivity data. The offset and/or sensitivity data may be used to adjust future measurements obtained from the sensor, thereby generating calibrated sensor measurements.
Abstract:
Disclosed herein are heart pumps that include a catheter assembly and that can be applied percutaneously. Some embodiments include a locking device that prevents components of the catheter assembly from being separated when in use. The catheter assembly can include an expandable tip. In some embodiments, the catheter assembly includes a housing having a wall structure, a portion of which can have a bulbous shape or can be deformable. In other embodiments, the housing can be configured to reduce fluttering or deflection of the housing and/or to maintain a gap between the housing and an impeller blade disposed therein.
Abstract:
Disclosed herein are heart pumps that include a catheter assembly and that can be applied percutaneously. Some embodiments include a locking device that prevents components of the catheter assembly from being separated when in use. The catheter assembly can include an expandable tip. In some embodiments, the catheter assembly includes a housing having a wall structure, a portion of which can have a bulbuous shape or can be deformable. In other embodiments, the housing can be configured to reduce fluttering or deflection of the housing and/or to maintain a gap between the housing and an impeller blade disposed therein.
Abstract:
Implantable apparatuses or biosensors for facilitating imaging-based diagnoses and methods thereof are disclosed. An implantable apparatus is configured to exhibit a form when subjected to a first physical parameter indicative of a first physiological state, and a second form when subjected to a second physical parameter indicative of a second physiological state.
Abstract:
An impeller includes a hub and at least one blade supported by the hub. The impeller has a stored configuration in which the blade is compressed so that its distal end moves towards the hub, and a deployed configuration in which the blade extends away from the hub. The impeller may be part of a pump for pumping fluids, such as blood within patients. A blood pump may include a cannula having a proximal portion with a fixed diameter, and a distal portion with an expandable diameter. The impeller may reside in the expandable portion of the cannula. The cannula may have a compressed diameter allowing percutaneous insertion into patients. Once at a desired location, the expandable portion of the cannula may be expanded and the impeller expanded to the deployed configuration. A flexible drive shaft may extend through the cannula for rotationally driving the impeller within the patient.
Abstract:
An intra-aortic balloon catheter (1) having a gas lumen insert (100) disposed within its gas lumen (3) during insertion of the catheter (1) into the blood vessel of a patient. The gas lumen insert (100) facilitates insertion and helps prevent kinking of the catheter (1).
Abstract:
An impeller (605) includes a hub (610) and at least one blade (612) supported by the hub. The impeller has a stored configuration in which the blade is compressed so that its distal end moves towards the hub, and a deployed configuration in which the blade extends away from the hub. The impeller may be part of a pump for pumping fluids, such as pumping blood within a patient. A blood pump (600) may include a cannula (625) having a proximal portion (623) with a fixed diameter, and a distal portion (626) with an expandable diameter. The impeller may reside in the expandable portion of the cannula. The cannula may have a compressed diameter which allows it to be inserted percutaneously into a patient. Once at a desired location, the expandable portion of the cannula may be expanded and the impeller expanded to the deployed configuration. A flexible drive shaft (630) may extend through the cannula for rotationally driving the impeller within the patient's body.