Abstract:
Methods of isolating nucleic acids from samples of cellular material are disclosed which use solid phase binding materials and which avoid the use of a lysis solution. The use of the solid phase binding materials unexpectedly allow the nucleic acid content of cells to be freed and captured directly and in one step. The new methods represent a significant simplification over existing methods. Preferred solid phase materials for use with the methods and compositions of the invention comprise a quaternary onium nucleic acid binding portion.
Abstract:
Solid phase materials for binding nucleic acids and methods of their use are disclosed. The materials feature a cleavable linker portion which can be cleaved to release bound nucleic acids. The solid phase materials comprise a solid support portion comprising a matrix selected from silica, glass, insoluble synthetic polymers, and insoluble polysaccharides to which is attached a nucleic acid binding portion for attracting and binding nucleic acids, the nucleic acid binding portion (NAB) being linked by a cleavable linker portion to the solid support portion. Preferred nucleic acid binding portions comprise a ternary or quaternary onium group. The materials can be in the form of microparticles, fibers, beads, membranes, test tubes or micowells and can further comprise a magnetic core portion. Methods of binding nucleic acids using the cleavable solid supports are disclosed as are their use in methods of isolating or purifying nucleic acids.
Abstract:
An assay method, compositions and test kits using a hydroxyaryl cyclic diacylhydrazide is described. A hydrogen peroxide and peroxidase enzyme. The preferred compositions incorporate enhancer compounds and a chelating agent which suppresses light production prior to addition of a peroxidase enzyme. The assay method can test for a peroxidase enzyme, a peroxide or can be used in immunoassays and probe assays.
Abstract:
Methods of producing fluorescence from fluorogenic substrates reactive with a peroxidase enzyme are disclosed. Use of the methods in assays for peroxidase enzymes, peroxidase-labeled analytes are provided. Fluorogenic compounds, compositions and kits for reaction with peroxidase enzymes are described. Two modes of producing fluorescent compounds are described.
Abstract:
A method for sequential chemiluminescent detection of two differently labeled analytes on a single blot is described. In the method, a uniquely labeled DNA is detected with a horseradish peroxidase (HRP) substrate followed by the detection of another uniquely labeled DNA with a second different enzyme substrate which also inhibits the chemiluminescence generated by HRP. The sequential detection method described herein eliminates the need to strip and reprobe Southern, Northern and Western blots. Potential applications of this method include forensic DNA fingerprinting where more than one probe is used for probing a Southern blot, multiplex DNA sequencing of more than one template, detection of gene rearrangements, mutations and gene linkage.
Abstract:
A chemiluminescent assay method, compositions and kits are described which use a protected phenolic enhancer compound which is deprotected by a hydrolytic enzyme and then enhances a chemiluminescent reaction. The reaction involves an acridan compound, preferably a derivative of an N-alkyl-acridan-9-carboxylic acid, which is activated to produce light by a peroxide compound and a peroxidase enzyme in the presence of the deprotected enhancer. The result is enhanced generation of light from the reaction. The hydrolytic enzyme is present alone or linked to a member of a specific binding pair in an immunoassay, DNA probe assay or other assay where the hydrolytic enzyme is bound to a reporter molecule.
Abstract:
Aryl N-alkylacridanthiocarboxylate compounds are used with peroxide and peroxidase to generate chemiluminescence. The compounds are used as a substrate in assays for various analytes. The figure shows a graph for a comparison of the light emission profiles from a reagent containing an aryl N-alkylacridanthiocarboxylate compound.
Abstract:
Acridans which are reactable with a peroxidase and peroxide. The acridans are characterized by having an aromatic leaving group ArO which is a di- or polyhalosubstituted phenoxy group. The compounds are useful in assays where one member of a binding pair is linked to the peroxidase and for detecting the peroxidase. The method can also be used to detect hydrogen peroxide.
Abstract:
Methods and materials are disclosed for rapid and simple extraction and isolation of nucleic acids, particularly RNA, from a biological sample involving the use of an alkaline reagent followed by an acidic solution and a solid phase binding material that has the ability to liberate nucleic acids from biological samples, including whole blood, without first performing any preliminary lysis to disrupt cells or viruses. No detergents or chaotropic substances for lysing cells or viruses are needed or used. Viral, bacterial and mammalian genomic RNA can be obtained using the method of the invention. RNA obtained by the present method is suitable for use in downstream processes such as RT-PCR.
Abstract:
Methods of isolating nucleic acids from samples of biological or cellular material are disclosed which use solid phase binding materials and which avoid the use of any lysis solution or coating. The use of the solid phase binding materials unexpectedly allow the nucleic acid content of cells to be freed and captured directly and in one step. the new methods represent a significant simplification over existing methods. Nucleic acids can be captured and released in a form suitable for downstream processing in under five minutes. Preferred solid phase materials for use with the methods and compositions of the invention comprise a quaternary onium nucleic acid binding portion.