Abstract:
A surgical navigation system comprising a signal receiver communicatively coupled to a primary processor, the primary processor programmed to utilize a sequential Monte Carlo algorithm to calculate changes in three dimensional position of an inertial measurement unit mounted to a surgical tool, the processor communicatively coupled to a first memory storing tool data unique to each of a plurality of surgical tools, and a second memory storing a model data sufficient to construct a three dimensional model of an anatomical feature, the primary processor communicatively coupled to a display providing visual feedback regarding the three dimensional position of the surgical tool with respect to the anatomical feature.
Abstract:
A prosthesis for implantation into a mammalian body, the device comprising: (a) a prosthesis (12) for implantation into a mammalian body that includes a sensor array (20) comprising a plurality of sensors mounted to the prosthesis; and (b) and electrics structure (22) for receiving signals from the sensor array and wirelessly transmitting representative signals to a remote receiver (91).
Abstract:
An apparatus 10 and method 30, 90 for imaging a tissue. The method includes transmitting a first microwave frequency signal to and receiving a first total signal from the tissue at a first position (Block 92). A second microwave frequency signal is transmitted to and a second total signal received from the tissue at a second position (Block 94). The first total signal is calibrated with respect to the second total signal (Block 104) and an image is constructed from the calibrated signal (Block 106).
Abstract:
A prosthesis for implantation into a mammalian body, the device comprising: (a) a prosthesis for implantation into a mammalian body that includes a sensor array comprising a plurality of sensors mounted to the prosthesis; and (b) an electronics structure for receiving signals from the sensor array and wirelessly transmitting representative signals to a remote receiver.
Abstract:
A method of tracking motion of a body part, the method comprising: (a) gathering motion data from a body part repositioned within a range of motion, the body part having mounted thereto a motion sensor; (b) gathering a plurality of radiographic images taken of the body part while the body part is in different positions within the range of motion, the plurality of radiographic images having the body part and the motion sensor within a field of view; and, (c) constructing a virtual three dimensional model of the body part from the plurality of radiographic images using a structure of the motion sensor identifiable within at least two of the plurality of radiographic images to calibrate the radiographic images.
Abstract:
A connected healthcare environment comprising: (a) an electronic central data storage communicatively coupled to at least one database comprising at least one of a statistical anatomical atlas and a kinematic database; (b) a computer running software configured to generate instructions for displaying an anatomical model of a patient's anatomy on a visual display; (c) a motion tracking device communicatively coupled to the computer and configured to transmit motion tracking data of a patient's anatomy as the anatomy is repositioned, where the software is configured to process the motion tracking data and generate instructions for displaying the anatomical model in a position that mimics the position of the patient anatomy in real time.
Abstract:
A method of calibrating an inertial measurement unit, the method comprising: (a) collecting data from the inertial measurement unit while stationary as a first step; (b) collecting data from the inertial measurement unit while repositioning the inertial measurement unit around three orthogonal axes of the inertial measurement unit as a second step; (c) calibrating a plurality of gyroscopes using the data collected during the first step and the second step; (d) calibrating a plurality of magnetometers using the data collected during the first step and the second step; (e) calibrating a plurality of accelerometers using the data collected during the first step and the second step; (f) where calibrating the plurality of magnetometers includes extracting parameters for distortion detection and using the extracted parameters to determine if magnetic distortion is present within a local field of the inertial measurement unit.
Abstract:
A surgical navigation module comprising: (a) a microcomputer; (b) a tri-axial accelerometer; (c) a tri-axial gyroscope; (d) at least three tri-axial magnetometers; (e) a communication module; (f) an ultrawide band transceiver; and, (g) at least four ultrawide band antennas.
Abstract:
A surgical navigation system comprising a signal receiver communicatively coupled to a primary processor, the primary processor programmed to utilize a sequential Monte Carlo algorithm to calculate changes in three dimensional position of an inertial measurement unit mounted to a surgical tool, the processor communicatively coupled to a first memory storing tool data unique to each of a plurality of surgical tools, and a second memory storing a model data sufficient to construct a three dimensional model of an anatomical feature, the primary processor communicatively coupled to a display providing visual feedback regarding the three dimensional position of the surgical tool with respect to the anatomical feature.
Abstract:
A method of generating a 3-D patient-specific musculoskeletal model. The method includes acquiring a plurality of raw radiofrequency ("RF") signals (142) from an A- mode ultrasound scan of the bone (1 16, 1 18, 120) while tracking the acquiring in 3D space. The bone contours are isolated in each of the plurality of RF signals (142) and transformed into a point cloud (165). A 3-D bone model of the bone (1 16, 1 18, 120) is then optimized with respect to the point cloud (165). The 3-D patient-specific musculoskeletal model may include a model of a bone, a model of a joint, a model of cartilage, or a combination thereof.