Abstract:
Devices and methods for modifying stomach volume include the formation of intragastric slots for wrapping one or more portions of the fundus therethrough with minimal interference with nerves and vasculature flow. Intragastric space occupying devices expand with environmental changes brought about by natural conditions inherent to the digestive cycle such as with changes in pH. Extragastric volume occupying balloons are placed into folded stomach sections. The balloons are fluidly coupled to external gastric filling devices. In yet another set of embodiments, methods and devices provide adjustable gastric volume reduction fundal wraps. In one embodiment, a device is placed in the fundus for Nissen fundoplication and permits postoperative adjustment to reach desired weight loss. Intragastric and extragastric balloons are optionally incorporated.
Abstract:
An apparatus for regulating the functioning of a patient's organ or duct includes an elongated member having a first end and a second end. A fastener is disposed on the first end of the elongated member. The fastener is configured to engage the second end of the elongated member so that the elongated member forms a loop around the organ or duct. A tension element is disposed for movement within the elongated member. A drive element is associated with and engages the tension element for causing the tension element to control the tension applied by the elongated member against a patient's body organ or duct. A tension release mechanism is associated with the tension element.
Abstract:
An apparatus for regulating the functioning of a patient's organ or duct includes an elongated member having a first end and a second end. A fastener is disposed on the first end of the elongated member. The fastener is configured to engage the second end of the elongated member so that the elongated member forms a loop around the organ or duct. A tension element is disposed for movement within the elongated member. A symmetrical drive system including a drive element associated with and engaging the tension element for causing the tension element to control the tension applied by the elongated member against a patient's body organ or duct is further provided. In accordance with an alternate embodiment an apparatus for regulating the functioning of a patient's organ or duct including an elongated member having a first end and a second end. A fastener is disposed on the first end of the elongated member. The fastener is configured to engage the second end of the elongated member so that the elongated member forms a loop around the organ or duct. A tension element is disposed for movement within the elongated member. The tension element is composed of a flexible first member and a flexible second member, wherein the flexible first member is movable relative to the flexible second member. A drive element is associated with and engages the tension element for causing the tension element to control the tension applied by the elongated member against a patient's body organ or duct.
Abstract:
Various embodiments are directed to an apparatus, system, and method for driving an end effector coupled to an ultrasonic transducer in a surgical instrument. The method comprises generating a first ultrasonic drive signal by a generator coupled to an ultrasonic drive system, actuating the ultrasonic transducer with the first ultrasonic drive signal for a first period, generating a second ultrasonic drive signal by the generator, and actuating the ultrasonic transducer with the second ultrasonic drive signal for a second period, subsequent to the first period. The first drive signal is different from the second drive signal over the respective first and second periods. The first and second drive signals define a step function waveform over the first and second periods. The apparatus comprises a generator configured to couple to an ultrasonic instrument. The system comprises a generator coupled to an ultrasonic instrument. The ultrasonic instrument comprises an ultrasonic drive system comprising an ultrasonic transducer coupled to a waveguide and an end effector coupled to the waveguide, and wherein the ultrasonic drive system is configured to resonate at a resonant frequency.
Abstract:
The present invention generally provides for a catheter (1200, 1300) for surgically treating a patient. The catheter has an inlet catheter (1202, 1302) having a proximal end and an open distal end, and first (1206, 1306) and second (1204, 1304) branch sections having proximal ends attached to the open distal end of the inlet lumen. The first and second branch sections and distal ends terminating at an open proximal end of an outlet lumen (1208, 1308). The first passageway lumen has a device (1210, 1312) for deactivating at least a portion of the digestive enzymes in an amount of bile.
Abstract:
A surgical generator (102) that may produce a drive signal or signals of particular voltages, currents, and frequencies, e.g. 55,500 cycles per second (Hz). The drive signal or signals may be provided to an ultrasonic surgical device (104), and specifically to a transducer. In one embodiment, the generator may be configured to produce a drive signal of a particular voltage, current, and/or frequency that can be stepped with high resolution, accuracy, and repeatability. Additionally, the surgical generator may generate a drive signal or signals with output power sufficient to perform bipolar electrosurgery using radio frequency (RF) energy. The drive signal may be provided, for example, to electrodes of the electrosurgical device (106). Accordingly, the generator may be configured for therapeutic purposes by applying electrical signals to an ultrasonic transducer or electrical energy to the tissue sufficient for treating the tissue (e.g., cutting, coagulation, cauterization, tissue welding).
Abstract:
Devices and methods for modifying stomach volume include the formation of intragastric slots for wrapping one or more portions of the fundus therethrough with minimal interference with nerves and vasculature flow. Intragastric space occupying devices expand with environmental changes brought about by natural conditions inherent to the digestive cycle such as with changes in pH. Extragastric volume occupying balloons are placed into folded stomach sections. The balloons are fluidly coupled to external gastric filling devices. In yet another set of embodiments, methods and devices provide adjustable gastric volume reduction fundal wraps. In one embodiment, a device is placed in the fundus for Nissen fundoplication and permits postoperative adjustment to reach desired weight loss. Intragastric and extragastric balloons are optionally incorporated.
Abstract:
An apparatus for regulating the functioning of a patient's organ or duct includes an elongated member having a first end and a second end. The elongated member has a compressible ventral surface and a substantially rigid dorsal periphery, wherein the elongated member includes a fluid bladder positioned along the ventral surface. A fastener is disposed on the first end of the elongated member. The fastener is configured to engage the second end of the elongated member so that the elongated member forms a loop around the organ or duct. A tension element is disposed for movement within the elongated member. A drive element is associated with and engages the tension element for causing the tension element to control the tension applied by the elongated member against a patient's body organ or duct. Alternate embodiments are also disclosed.
Abstract:
An apparatus for regulating the functioning of a patient's organ or duct includes an elongated member having a first end and a second end. A fastener is disposed on the first end of the elongated member. The fastener is configured to engage the second end of the elongated member so that the elongated member forms a loop around the organ or duct. A tension element is disposed for movement within the elongated member. A symmetrical drive system including a drive element associated with and engaging the tension element for causing the tension element to control the tension applied by the elongated member against a patient's body organ or duct is further provided. In accordance with an alternate embodiment an apparatus for regulating the functioning of a patient's organ or duct including an elongated member having a first end and a second end. A fastener is disposed on the first end of the elongated member. The fastener is configured to engage the second end of the elongated member so that the elongated member forms a loop around the organ or duct. A tension element is disposed for movement within the elongated member. The tension element is composed of a flexible first member and a flexible second member, wherein the flexible first member is movable relative to the flexible second member. A drive element is associated with and engages the tension element for causing the tension element to control the tension applied by the elongated member against a patient's body organ or duct.