Abstract:
A method for analyzing data, such as biological data for example, for identifying one or more network motifs, or recurring patterns of relationships and/or behavioral connections between the components of a complex system. The method of the present invention is optionally and preferably applied to biological systems, such as gene regulatory systems for example.
Abstract:
A system for carbon fixation is provided. The system comprises enzymes which catalyze reactions of a carbon fixation pathway, wherein at least one of the reactions of the carbon fixation pathway is a carboxylation reaction, wherein products of the reactions of the carbon fixation pathway comprise oxaloacetate and malonyl-CoA, wherein an enzyme which performs the carboxylation reaction is selected from the group consisting of phophoenolpyruvate (PEP) carboxlase, pyruvate carboxylase and acetyl-CoA carboxylase and wherein an export product of the carbon fixation pathway is glyoxylate. Additional carbon fixation pathways are also provided and methods of generating same.
Abstract:
Nucleic acid construct systems are disclosed. The constructs comprise: (i) a first nucleic acid construct comprising a first nucleic acid sequence encoding a first reporter polypeptide linked to an additional nucleic acid sequence capable of inserting the first nucleic acid construct into a genome of a host cell such that an endogenous polypeptide covalently attached to the first reporter polypeptide is expressed in the cell; and (ii) a second nucleic acid construct comprising a second nucleic acid sequence encoding a second reporter polypeptide, linked to an additional nucleic acid sequence capable of inserting in a non-directed manner the second nucleic acid construct into a genome of a host cell such that an endogenous polypeptide covalently attached to the second reporter polypeptide is expressed in the cell, wherein the first reporter polypeptide and the second reporter polypeptide are distinguishable. Cells and cell populations comprising same as well as methods of generating same are also disclosed. In addition, use of the novel construct systems are disclosed for identifying target agents are also disclosed.
Abstract:
Nucleic acid construct systems are disclosed. The constructs comprise: (i) a first nucleic acid construct comprising a first nucleic acid sequence encoding a first reporter polypeptide linked to an additional nucleic acid sequence capable of inserting the first nucleic acid construct into a genome of a host cell such that an endogenous polypeptide covalently attached to the first reporter polypeptide is expressed in the cell; and (ii) a second nucleic acid construct comprising a second nucleic acid sequence encoding a second reporter polypeptide, linked to an additional nucleic acid sequence capable of inserting in a non-directed manner the second nucleic acid construct into a genome of a host cell such that an endogenous polypeptide covalently attached to the second reporter polypeptide is expressed in the cell, wherein the first reporter polypeptide and the second reporter polypeptide are distinguishable. Cells and cell populations comprising same as well as methods of generating same are also disclosed. In addition, use of the novel construct systems are disclosed for identifying target agents are also disclosed.
Abstract:
A system for carbon fixation is provided. The system comprises enzymes which catalyze reactions of a carbon fixation pathway, wherein at least one of the reactions of the carbon fixation pathway is a carboxylation reaction, wherein products of the reactions of the carbon fixation pathway comprise oxaloacetate and malonyl-CoA, wherein an enzyme which performs the carboxylation reaction is selected from the group consisting of phophoenolpyruvate (PEP) carboxlase, pyruvate carboxylase and acetyl-CoA carboxylase and wherein an export product of the carbon fixation pathway is glyoxylate. Additional carbon fixation pathways are also provided and methods of generating same.
Abstract:
A method for analyzing data, such as biological data for example, for identifying one or more network motifs, or recurring patterns of relationships and/or behavioral connections between the components of a complex system. The method of the present invention is optionally and preferably applied to biological systems, such as gene regulatory systems for example.